
【国外标准】 Standard Test Methods for DC Resistance or Conductance of Insulating Materials
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Insulating materials are used to isolate components of an electrical system from each other and from ground, as well as to provide mechanical support for the components. For this purpose, it is generally desirable to have the insulation resistance as high as possible, consistent with acceptable mechanical, chemical, and heat-resisting properties. Since insulation resistance or conductance combines both volume and surface resistance or conductance, its measured value is most useful when the test specimen and electrodes have the same form as is required in actual use. Surface resistance or conductance changes rapidly with humidity, while volume resistance or conductance changes slowly with the total change being greater in some cases.5.2 Resistivity or conductivity is used to predict, indirectly, the low-frequency dielectric breakdown and dissipation factor properties of some materials. Resistivity or conductivity is often used as an indirect measure of: moisture content, degree of cure, mechanical continuity, or deterioration of various types. The usefulness of these indirect measurements is dependent on the degree of correlation established by supporting theoretical or experimental investigations. A decrease of surface resistance results either in an increase of the dielectric breakdown voltage because the electric field intensity is reduced, or a decrease of the dielectric breakdown voltage because the area under stress is increased.5.3 All the dielectric resistances or conductances depend on the length of time of electrification and on the value of applied voltage (in addition to the usual environmental variables). These must be known and reported to make the measured value of resistance or conductance meaningful. Within the electrical insulation materials industry, the adjective “apparent” is generally applied to resistivity values obtained under conditions of arbitrarily selected electrification time. See X1.4.5.4 Volume resistivity or conductivity is calculated from resistance and dimensional data for use as an aid in designing an insulator for a specific application. Studies have shown changes of resistivity or conductivity with temperature and humidity (1-4).4 These changes must be known when designing for operating conditions. Volume resistivity or conductivity determinations are often used in checking the uniformity of an insulating material, either with regard to processing or to detect conductive impurities that affect the quality of the material and that are not readily detectable by other methods.5.5 Volume resistivities above 1021 Ω·cm (1019 Ω·m), calculated from data obtained on specimens tested under usual laboratory conditions, are of doubtful validity, considering the limitations of commonly used measuring equipment.5.6 Surface resistance or conductance cannot be measured accurately, only approximated, because some degree of volume resistance or conductance is always involved in the measurement. The measured value is also affected by the surface contamination. Surface contamination, and its rate of accumulation, is affected by many factors including electrostatic charging and interfacial tension. These, in turn, affect the surface resistivity. Surface resistivity or conductivity is considered to be related to material properties when contamination is involved but is not a material property of electrical insulation material in the usual sense.1.1 These test methods cover direct-current procedures for the measurement of dc insulation resistance, volume resistance, and surface resistance. From such measurements and the geometric dimensions of specimen and electrodes, both volume and surface resistivity of electrical insulating materials can be calculated, as well as the corresponding conductances and conductivities.1.2 These test methods are not suitable for use in measuring the electrical resistance/conductance of moderately conductive materials. Use Test Method D4496 to evaluate such materials.1.3 These test methods describe several general alternative methodologies for measuring resistance (or conductance). Specific materials can be tested most appropriately by using standard ASTM test methods applicable to the specific material that define both voltage stress limits and finite electrification times as well as specimen configuration and electrode geometry. These individual specific test methodologies would be better able to define the precision and bias for the determination.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D257-14(2021)e1
标准名称:
Standard Test Methods for DC Resistance or Conductance of Insulating Materials
英文名称:
Standard Test Methods for DC Resistance or Conductance of Insulating Materials标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 1338.1:1992/Amdt 1:1994 Filters for eye protectors - Filters for protection against radiation generated in welding and allied operations
- AS/NZS 13818.1 Supp 1:1999 Information technology - Generic coding of moving pictures and associated audio information Systems - Registration procedures (Supplement to AS/NZS 13818.1:1997)
- AS/NZS 13818.2 Supp 1:1999 Information technology - Generic coding of moving pictures and associated audio information Video - Registration of copyright identifiers (Supplement to AS/NZS 13818.2:1997)
- AS/NZS 1429.1:2000/Amdt 1:2002 Electric cables - Polymeric insulated For working voltages 1.9/3.3 (3.6) kV up to and including 19/33 (36) kV
- AS/NZS 1554.1:1995/Amdt 1:1998 Structural steel welding - Welding of steel structures
- AS/NZS 1554.3:2002/Amdt 1:2003 Structural steel welding Welding of reinforcing steel
- AS/NZS 1595:1998 (R2016)/Amdt 1:2014 Cold-rolled, unalloyed, steel sheet and strip
- AS/NZS 1660.2.1:1998 (R2017)/Amdt 1:2001 Test methods for electric cables, cords and conductors - Insulation, extruded semi-conductive screens and non-metallic sheaths - Methods for general application
- AS/NZS 1660.2.4:1998 (R2017)/Amdt 1:2001 Test methods for electric cables, cords and conductors - Insulation, extruded semi-conductive screens and non-metallic sheaths - Methods specific to polyethylene and polypropylene materials
- AS/NZS 1660.2.5:1998 (R2017)/Amdt 1:2001 Test methods for electric cables, cords and conductors - Insulation, extruded semi-conductive screens and non-metallic sheaths - Methods specific to cables above 1 kV
- AS/NZS 1660.5.6:1998/Amdt 1:2001 Test methods for electric cables, cords and conductors - Fire tests - Test for combustion propagation
- AS/NZS 1664.1 Supp 1:1997/Amdt 1:1999 Aluminium structures - Limit state design - Commentary (Supplement to AS/NZS 1664.1:1997)
- AS/NZS 1664.1:1997/Amdt 1:1999 Aluminium structures - Limit state design (Reconfirmed 2020)
- AS/NZS 1664.2 Supp 1:1997/Amdt 1:1999 Aluminium structures - Allowable stress design - Commentary (Supplement to AS/NZS 1664.2:1997) (Reconfirmed 2020)
- AS/NZS 1664.2:1997/Amdt 1:1999 Aluminium structures - Allowable stress design (Reconfirmed 2020)