
【国外标准】 Standard Practice for Conducting Tests on Sealants Using Artificial Weathering Apparatus
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This practice determines the effects of actinic radiation, elevated temperature, and moisture on sealants and their constituents under controlled laboratory artificial weather test conditions.5.2 When conducting exposures in devices which use laboratory light sources, it is important to consider (1) how well the artificial test conditions will reproduce property changes and failure modes caused by end-use environments on the sealant being tested and (2) the stability ranking of sealants. Refer to Practice G151 for full cautionary guidance regarding laboratory weathering.5.3 Because of differences in the spectral power distributions of the exposure sources (xenon arc, fluorescent UV lamps, and open flame carbon arc), as well as other conditions used in the three types of laboratory weathering tests, including temperature, type and amount of moisture, and test cycles, these three procedures may not result in the same performance ranking or types of failure modes of sealants. Further, different exposure durations may be required for testing the weathering performance of sealants by the three types of exposures. Comparisons should not be made of the relative stability of sealants exposed in the different types of apparatus.5.4 Variations in results may be expected when operating conditions are varied within the accepted limits of this practice. Therefore, all test results using this practice must be accompanied by a report of the specific operating conditions as required in Section 10. Refer to Practice G151 for detailed information on the caveats applicable to use of results obtained according to this practice.5.5 No laboratory exposure test can be specified as a total simulation of actual use conditions in outdoor environments. The relative durability of materials in actual use conditions can vary in different locations because of differences in UV radiation, time of wetness, relative humidity, temperature, pollutants, and other factors. Results obtained from these laboratory accelerated exposures can be considered as representative of actual use exposures only when the degree of rank correlation has been established for the specific materials being tested and when the failure mode is the same. Exposure of a similar material of known outdoor performance, a control, along with the test specimens provides for evaluation in terms of relative durability under the test conditions, which also greatly improves the agreement in test results among different laboratories.5.6 The acceleration factor relating the exposure time in a laboratory accelerated test to exposure time outdoors required to produce equivalent degradation is material dependent and can be significantly different for each material and for different formulations of the same material. Therefore, the acceleration factor determined for one material cannot be assumed to be applicable to other materials.5.7 Results of this procedure will depend on the care that is taken to operate the equipment according to Practices G152, G154, and G155. Significant factors include regulation of the line voltage, freedom from salt or other deposits from water, temperature control, humidity control, where applicable, condition and age of the burners and filters in xenon arc equipment, and age of lamps in fluorescent UV equipment.NOTE 1: Additional information on sources of variability and on strategies for addressing variability in the design, execution and data analysis of laboratory accelerated exposure tests is found in Guide G141.1.1 This practice covers three types of laboratory weathering exposure procedures for evaluating the effect of actinic radiation, heat, and moisture on sealants.1.2 The exposure sources used in the three types of artificial weathering devices are the filtered xenon arc, fluorescent ultraviolet lamps, and open flame carbon arc based on Practices G155, G154, and G152, respectively.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 The ISO standard related to this Practice is ISO 11431. Significant differences exist between the procedures. The ISO specimens are exposed through glass and are elongated prior to examination for loss of adhesion or cohesion, or both, following exposure.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C1442-14(2021)
标准名称:
Standard Practice for Conducting Tests on Sealants Using Artificial Weathering Apparatus
英文名称:
Standard Practice for Conducting Tests on Sealants Using Artificial Weathering Apparatus标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM C1441-13 Standard Test Method for the Analysis of Refrigerant 114, Plus Other Carbon-Containing and Fluorine-Containing Compounds in Uranium Hexafluoride via Fourier-Transform Infrared (FTIR) Spectroscopy (Withdrawn 2022)
- 下一篇: ASTM C1443-99(2016) Standard Specification for Glasses, Portlight, Circular, Fully Tempered (Withdrawn 2021)
- 推荐标准
- ASTM E423-71(2019) Standard Test Method for Normal Spectral Emittance at Elevated Temperatures of Nonconducting Specimens
- ASTM E424-71(2023) Standard Test Methods for Solar Energy Transmittance and Reflectance (Terrestrial) of Sheet Materials
- ASTM E431-96(2022) Standard Guide to Interpretation of Radiographs of Semiconductors and Related Devices
- ASTM E433-71(2023) Standard Reference Photographs for Liquid Penetrant Inspection
- ASTM E434-10(2020) Standard Test Method for Calorimetric Determination of Hemispherical Emittance and the Ratio of Solar Absorptance to Hemispherical Emittance Using Solar Simulation
- ASTM E436-03(2021) Standard Test Method for Drop-Weight Tear Tests of Ferritic Steels
- ASTM E438-92(2024) Standard Specification for Glasses in Laboratory Apparatus
- ASTM E439-23 Standard Test Methods for Chemical Analysis of Beryllium
- ASTM E445/E445M-15(2019) Standard Test Method for Stopping Distance on Paved Surfaces Using a Passenger Vehicle Equipped with Full-Scale Tires
- ASTM E446-20 Standard Reference Radiographs for Steel Castings Up to 2 in. (50.8 mm) in Thickness
- ASTM E45-18a(2023) Standard Test Methods for Determining the Inclusion Content of Steel
- ASTM E452-02(2023) Standard Test Method for Calibration of Refractory Metal Thermocouples Using a Radiation Thermometer
- ASTM E454-12(2021) Standard Specification for Industrial Perforated Plate and Screens (Square Opening Series)
- ASTM E455-19 Standard Test Method for Static Load Testing of Framed Floor or Roof Diaphragm Constructions for Buildings
- ASTM E457-08(2020) Standard Test Method for Measuring Heat-Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter