
【国外标准】 Standard Test Method for Carbon Black—Morphological Characterization of Carbon Black Using Electron Microscopy
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 Carbon black morphology significantly affects the transient and end-use properties of carbon black loaded polymer systems. A carbon black’s particle size distribution is its single most important property, and it relates to degree of blackness, rubber reinforcement, and ability to impart UV protection. For a given loading of carbon black, blackness, reinforcement, and UV protection increase with smaller particle size. Aggregate size and shape (structure) also affect a carbon black's end-use performance, as higher carbon black structure increases viscosity and improves dispersion. The stiffness (modulus) of elastomer systems becomes significantly higher with increasing structure. The preferred method for measuring carbon black morphology (for example, size and shape) is transmission electron microscopy (TEM), but due to the semi-quantitative nature of TEM, it is not suited for mean particle size (MPS) certification. While useful morphological information can be obtained from TEM measurements within a laboratory, due to their inherent between-laboratory variability, TEM generated values should not be used for specification purposes.4.2 Certification of carbon blacks for UV protection (weatherability) in certain plastics applications has historically been performed using TEM generated mean particle size values. ASTM Committee D24 has demonstrated that due to challenges with obtaining quantitative primary particle size data, particularly between laboratories, a qualification test based on surface area has been implemented, as detailed in Test Method B.4.3 Carbon black aggregate dimensional and shape properties are dependent upon the nature of the system in which the sample is dispersed, as well as the mixing procedure.1.1 This test method covers (1) the morphological (for example, size and shape) characterization of carbon black from transmission electron microscope images which are used to derive the mean particle and aggregate size of carbon black in the dry (as manufactured) state, from CAB chip dispersion or removed from a rubber compound and (2) the certification of mean particle size using a correlation based on statistical thickness surface area measurements.1.2 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D3849-22
标准名称:
Standard Test Method for Carbon Black—Morphological Characterization of Carbon Black Using Electron Microscopy
英文名称:
Standard Test Method for Carbon Black—Morphological Characterization of Carbon Black Using Electron Microscopy标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM B1-13(2018) Standard Specification for Hard-Drawn Copper Wire
- ASTM B100-20 Standard Specification for Wrought Copper-Alloy Bearing and Expansion Plates and Sheets for Bridge and Other Structural Use
- ASTM B1002-16(2020) Standard Specification for Refined Indium
- ASTM B1003-16(2023) Standard Specification for Seamless Copper Tube for Linesets
- ASTM B1004-16(2022) Standard Practice for Contact Performance Classification of Electrical Connection Systems
- ASTM B1005-17(2023) Standard Specification for Copper-Clad Aluminum Bar for Electrical Purposes (Bus Bar)
- ASTM B1008-18 Standard Test Method for Stress-Strain Testing for Overhead Electrical Conductors
- ASTM B1010/B1010M-19 Standard Specification for Copper-Clad Steel Electrical Conductor for Tracer Wire Applications
- ASTM B1011/B1011M-22 Standard Specification for Cobalt Alloy Spring Wire
- ASTM B1013-22 Standard Specification for High Fluidity (HF) Zinc-Aluminum Alloy Thin Wall Die Castings
- ASTM B1014-20 Standard Specification for Welded Copper and Copper Alloy Condenser and Heat Exchanger Tubes with a Textured Surface(s)
- ASTM B1019-21 Standard Test Method for Determination of Surface Oxides on Copper Rod(for Electrical Purposes)
- ASTM B1020/B1020M-22 Standard Specification for Seamless Nickel Alloy Mechanical Tubing and Hollow Bar
- ASTM B1021-21 Standard Test Method for Peel Resistance of Metal Sheets Joined by High Strength Bonds
- ASTM B1022-22 Standard Specification for Zinc-Aluminum-Magnesium Alloys in Ingot Form for Coating Steel Sheet by the Hot-Dip Process