
【国外标准】 Standard Test Method for Measuring the Coefficient of Retroreflected Luminance of Pavement Markings in a Standard Condition of Continuous Wetting (RL-Rain) (Withdrawn 2013)
本网站 发布时间:
2024-02-28
- ASTM E2176-08
- Withdrawn, Replaced
- 定价: 0元 / 折扣价: 0 元
- 在线阅读
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
The coefficient of retroreflected luminance, RL, is the property of a pavement marking system that provides a measure of the retroreflective efficiency of the marking and depends on factors such as the materials used, age, and wear pattern. These conditions shall be observed and noted by the user.Under identical conditions of headlight illumination and driver's viewing, larger values of RL correspond to higher levels of visibility at corresponding geometry.The pavement marking's measured retroreflective efficiency in conditions of continuous wetting may be used to characterize the properties of the marking on the road as water is continuously falling on it. The retroreflective efficiency of the marking in conditions of continuous wetting may be different than in dry, wet or damp conditions.This test method may produce measurements of RL-Rain for pavement marking systems that do not correlate to nighttime visibility distance during typical rain events. The rainfall intensity simulated by this test method is significantly greater than most ordinary or even heavy rainfall events. As a result, the test specimen, unless it has vertical features exceeding3 mm, becomes flooded. Optics with an index of refraction less than 2.0 are practically ineffective when immersed in water. Thus, the test method is of limited applicability for assessing the wet retroreflective properties of pavement marking systems having vertical features less than 3 mm or optics having an index of refraction less than 2.0.Retroreflectivity of pavement (road) markings degrades with traffic wear and requires periodic measurement to ensure that sufficient line visibility is provided to drivers.Newly installed pavement markings may have a natural surface tension or release agents which prevent wetting of the marking by rain/water. This phenomenon produces unreliable and unrepeatable results when measuring retroreflective efficiency under wet conditions. This non-wetting phenomenon is generally eliminated after one month of wear and weathering on the road. A wetting agent can be used to estimate the RL-Rain properties of new markings (see 5.4).Roadway characteristics such as longitudinal slope, cross slope and pavement porosity will impact the results of this test method.1.1 This test method covers a measurement of the wet retroreflective (RL-Rain) properties of horizontal pavement marking materials, such as traffic stripes and road surface symbols.1.2 This method of measuring wet retroreflective properties (RL) of pavement markings utilizes a method of continuously wetting the marking during measurement (see Fig. 1).Note 1—Test Method E 2177 may be used to describe the retroreflective properties of pavement markings in conditions of wetness after a period of rain.1.3 This test method is most suitable for laboratory use under controlled conditions, but may also be used for field measurements when the necessary controls and precautions are followed.1.4 This test method specifies the use of reflectometers that can measure pavement markings per Test Method E 1710. The entrance and observation angles required of the retroreflectometer in this test method are commonly referred to as “30 meter geometry.”1.5 This test method has been shown to produce reasonable results for pavement marking systems with optics having an index of refraction greater than 2.0 and structured markings having vertical structures greater than or equal to 3 mm. Users should exercise caution when using this test method for pavement marking systems with optics having an index of refraction less than 2.0 or markings having vertical structures less than 3 mm.1.6 Results obtained using this test method should not be the sole basis for specifying and assessing the wet retroreflective effectiveness of pavement marking systems. Users should complement the results of this test method with other evaluation results, such as nighttime visual inspections.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.Note 2—An alternative test method designed to better represent the retroreflective efficiency of pavement marking systems under typical rain events is under development.FIG. 1 Illustration of Measurement
标准号:
ASTM E2176-08
标准名称:
Standard Test Method for Measuring the Coefficient of Retroreflected Luminance of Pavement Markings in a Standard Condition of Continuous Wetting (RL-Rain) (Withdrawn 2013)
英文名称:
Standard Test Method for Measuring the Coefficient of Retroreflected Luminance of Pavement Markings in a Standard Condition of Continuous Wetting (RL-Rain) (Withdrawn 2013)标准状态:
Withdrawn, Replaced-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D8137-18(2023) Practice for Accelerated Aging of Leather
- ASTM D8138-23 Standard Specification for Preformed Silicone Joint Sealing System for Bridges
- ASTM D8139-23 Standard Specification for Semi-Rigid, Closed-Cell Polypropylene Foam, Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction
- ASTM D814-95(2020) Standard Test Method for Rubber Property—Vapor Transmission of Volatile Liquids
- ASTM D8140-18(2023) Standard Guide for the Use of Foundry Sand in Asphalt Mixtures
- ASTM D8141-22 Standard Guide for Selecting Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) Emission Testing Methods to Determine Emission Parameters for Modeling of Indoor Environments
- ASTM D8144-22 Standard Test Method for Separation and Determination of Aromatics, Nonaromatics, and FAME Fractions in Middle Distillates by Solid-Phase Extraction and Gas Chromatography
- ASTM D8148-22 Standard Test Method for Spectroscopic Determination of Haze in Fuels
- ASTM D8149-20 Standard Practice for Optimization, Calibration, and Validation of Ion Chromatographic Determination of Heteroatoms and Anions in Petroleum Products and Lubricants
- ASTM D8150-22 Standard Test Method for Determination of Organic Chloride Content in Crude Oil by Distillation Followed by Detection Using Combustion Ion Chromatography
- ASTM D8152-18 Standard Practice for Measuring Field Infiltration Rate and Calculating Field Hydraulic Conductivity Using the Modified Philip Dunne Infiltrometer Test
- ASTM D8154-24 Standard Test Methods for 1H-NMR Determination of Ketone-Ethylene-Ester and Polyvinyl Chloride Contents in KEE-PVC Roofing Fabrics
- ASTM D8155-17(2023) Standard Practice for Shake Extraction of Solid Mining and Metallurgical Processing Waste with Water
- ASTM D816-06(2023) Standard Test Methods for Rubber Cements
- ASTM D8160-20 Standard Test Method for Un-notched Cantilever Beam Impact Resistance (Izod Impact) Testing of Thermoplastic Pavement Marking Materials