
【国外标准】 Standard Test Method for Determining Stress-Corrosion Cracking Resistance of Heat-Treatable Aluminum Alloy Products Using Breaking Load Method
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The test method was developed for use with high strength aluminum alloys (2XXX and Cu containing 7XXX) that are normally tested in 3.5 weight % NaCl by alternate immersion. However, the concept which uses residual strength as a measure of damage evolution (in this case environmentally assisted cracking) can, in principle, be applied to any alloy and environmental system.5.2 This test method has been developed for research studies of alloys and tempers with improved resistance to SCC. The test results permit different material variants to be compared with a high degree of confidence and with much more precision than the results of pass/fail tests. Thus, it is particularly useful for comparing materials with similar levels of resistance to stress-corrosion cracking. The procedure could be modified for use as a quality assurance tool but this has not been a primary purpose during its development.5.3 The exposure periods and conditions that are described in this test method apply specifically to high strength aluminum alloys, but the statistical techniques should be valid for other alloy systems with different exposure conditions.5.4 Although this particular procedure was primarily intended for testing products in the short-transverse stressing direction, it is useful for other stressing directions, particularly the long-transverse direction in sheet and thin plate products.5.5 Determination of the actual serviceability of a material requires stress-corrosion testing performed in the intended service environment, under conditions relating to the end use, including protective measures such as coatings and inhibitors and is outside the scope of this test method.5.5.1 There is no good way to compare test environments to actual service because most service environments have large inherent variability with respect to a single structure that may experience many different environments or with respect to two identical structures that serve in different locations. Unless a sample can be tested in the actual service environment for the expected life of the component, no conclusive determination can be made about the suitability of a particular material for a particular application. Designers must therefore make judgments on the suitability of particular materials for applications based on knowledge of the material and of the service environment. To avoid service failures, the environment used for preliminary evaluations is often chosen based on a worst case scenario leading to intentional overestimations of corrosion damage.1.1 This test method covers procedures for evaluation of stress corrosion cracking (SCC) resistance by the breaking load test method, a concept which uses residual strength as the measure of damage evolution (in this case environmentally assisted cracking).1.2 This test method covers specimen type and replication, test environment, stress levels, exposure periods, final strength determination, and statistical analysis of the raw residual strength data.1.3 The test method was developed for use with heat-treatable aluminum alloys, that is, 2XXX alloys and 7XXX with 1.2 to 3.0 % Cu, and test specimens oriented in the short-transverse direction relative to grain structure (1, 2).2 However, the residual strength measurements and the statistics used to analyze the data are not specific to heat-treatable aluminum alloys and can be used for other specimen orientations and different types of materials.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM G139-05(2022)
标准名称:
Standard Test Method for Determining Stress-Corrosion Cracking Resistance of Heat-Treatable Aluminum Alloy Products Using Breaking Load Method
英文名称:
Standard Test Method for Determining Stress-Corrosion Cracking Resistance of Heat-Treatable Aluminum Alloy Products Using Breaking Load Method标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 2022:2003 Anhydrous ammonia - Storage and handling
- AS/NZS 2022:2003/Amdt 1:2003 Anhydrous ammonia - Storage and handling
- ASTM E2264-23 Standard Practice for Determining the Effects of Temperature Cycling on Fenestration Products
- ASTM E2268-04(2023) Standard Test Method for Water Penetration of Exterior Windows, Skylights, and Doors by Rapid Pulsed Air Pressure Difference
- ASTM E2269-21 Standard Test Method for Determining Argon Concentration in Sealed Insulating Glass Units using Gas Chromatography
- ASTM E2273-18 Standard Test Method for Determining the Drainage Efficiency of Exterior Insulation and Finish Systems (EIFS) Clad Wall Assemblies
- ASTM E2279-20 Standard Practice for Establishing the Guiding Principles of Property Asset Management
- ASTM E228-22 Standard Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer
- ASTM E2280-21 Standard Guide for Fire Hazard Assessment of the Effect of Upholstered Seating Furniture Within Patient Rooms of Health Care Facilities
- ASTM E2281-15(2020) Standard Practice for Process Capability and Performance Measurement
- ASTM E2282-23 Standard Guide for Defining the Test Result of a Test Method
- ASTM E2283-08(2019) Standard Practice for Extreme Value Analysis of Nonmetallic Inclusions in Steel and Other Microstructural Features
- ASTM E2294-21 Standard Practice for Proof Silver Corrections in Metal Bearing Ores, Concentrates, and Related Materials by Fire Assay Gravimetry
- ASTM E2295-21 Standard Practice for Fire Assay Silver Corrections in Analysis of Metal Bearing Ores, Concentrates, and Related Metallurgical Materials by Silver Determination in Slags and Cupels
- ASTM E2298-18 Standard Test Method for Instrumented Impact Testing of Metallic Materials