
【国外标准】 Standard Test Method for Determination of Asbestos in Soil
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This analysis method is used for the testing of soil samples for asbestos. The emphasis is on detection and analysis of sieved particles for asbestos in the soil. Debris identifiable as bulk building material that is readily separable from the soil is to be analyzed and reported separately.5.2 The coarse fraction of the sample (>2 mm to <19 mm) may contain large pieces of asbestos-containing material that may release fibers and break down during the sieving process into smaller pieces that pass through the 2-mm sieve into the medium fraction. If this alteration of the original sample is not desired by the investigator, these pieces should be removed from the sample before sieving and returned to the coarse fraction before analysis.5.3 This test method does not describe procedures or techniques required to evaluate the safety or habitability of buildings or outdoor areas potentially contaminated with asbestos-containing materials or compliance with federal, state, or local regulations or statutes. It is the investigator's responsibility to make these determinations.5.4 Whereas this test method produces results that may be used for evaluation of sites contaminated by construction, mine, and manufacturing wastes; deposits of natural occurrences of asbestos; and other sources of interest to the investigator, the application of the results to such evaluations and the conclusions drawn there from, including any assessment of risk or liability, is beyond the scope of this test method and is the responsibility of the investigator.1.1 This test method covers a procedure to: (1) identify asbestos in soil, (2) provide an estimate of the concentration of asbestos in the sampled soil (dried), and (3) optionally to provide a concentration of asbestos reported as the number of asbestos structures per gram of sample.1.2 In this test method, results are produced that may be used for evaluation of sites contaminated by construction, mine and manufacturing wastes, deposits of natural occurrences of asbestos (NOA), and other sources of interest to the investigator.1.3 This test method describes the gravimetric, sieve, and other laboratory procedures for preparing the soil for analysis as well as the identification and quantification of any asbestos detected. Pieces of collected soil and material embedded therein that pass through a 19-mm sieve will become part of the sample that is analyzed and for which results are reported.1.3.1 Asbestos is identified and quantified by polarized light microscopy (PLM) techniques including analysis of morphology and optical properties. Optional transmission electron microscopy (TEM) identification and quantification of asbestos is based on morphology, selected area electron diffraction (SAED), and energy dispersive X-ray analysis (EDXA). Some information about fiber size may also be determined. The PLM and TEM methods use different definitions and size criteria for fibers and structures. Separate data sets may be produced.1.4 This test method has an analytical sensitivity of 0.25 % by weight with optional procedures to allow for an analytical sensitivity of 0.1 % by weight.1.5 This test method does not purport to address sampling strategies or variables associated with soil environments. Such considerations are the responsibility of the investigator collecting and submitting the sample. Appendix X2 covering elements of soil sampling and good field practices is attached.1.6 Units—The values stated in SI units are to be regarded as the standard. Other units may be cited in the method for informational purposes only.1.7 Hazards—Asbestos fibers are acknowledged carcinogens. Breathing asbestos fibers can result in disease of the lungs including asbestosis, lung cancer, and mesothelioma. Precautions should be taken to avoid creating and breathing airborne asbestos particles when sampling and analyzing materials suspected of containing asbestos.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7521-22
标准名称:
Standard Test Method for Determination of Asbestos in Soil
英文名称:
Standard Test Method for Determination of Asbestos in Soil标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D7379/D7379M-08(2021) Standard Test Methods for Strength of Modified Bitumen Sheet Material Laps Using Cold Process Adhesive
- ASTM D7381-07(2021)e1 Standard Practice for Establishing Allowable Stresses for Round Timbers for Piles from Tests of Full-Size Material
- ASTM D7382-20 Standard Test Methods for Determination of Maximum Dry Unit Weight of Granular Soils Using a Vibrating Hammer
- ASTM D7385-21 Standard Guide for Estimating Carbon Saturation by Temperature Rise Upon Immersion
- ASTM D7387-20 Standard Test Method for Vibration Testing of Intermediate Bulk Containers (IBCs) Used for Shipping Liquid Hazardous Materials (Dangerous Goods)
- ASTM D7390-18e1 Standard Guide for Evaluating Asbestos in Dust on Surfaces by Comparison Between Two Environments
- ASTM D7391-20 Standard Test Method for Categorization and Quantification of Airborne Fungal Structures in an Inertial Impaction Sample by Optical Microscopy
- ASTM D7392-20 Standard Practice for PM Detector and Bag Leak Detector Manufacturers to Certify Conformance with Design and Performance Specifications for Cement Plants
- ASTM D7395-18(2023) Standard Test Method for Cone/Plate Viscosity at a 500 s-1 Shear Rate
- ASTM D7396-14(2020) Standard Guide for Preparation of New, Continuous Zinc-Coated (Galvanized) Steel Surfaces for Painting
- ASTM D7398-23 Standard Test Method for Boiling Range Distribution of Fatty Acid Methyl Esters (FAME) in the Boiling Range from 100 °C to 615 °C by Gas Chromatography
- ASTM D7399-18 Standard Test Method for Determination of the Amount of Polypropylene in Polypropylene/Low Density Polyethylene Mixtures Using Infrared Spectrophotometry
- ASTM D7400/D7400M-19 Standard Test Methods for Downhole Seismic Testing
- ASTM D7402-09(2017) Standard Practice for Identifying Cationic Emulsified Asphalts
- ASTM D7403-19 Standard Test Method for Determination of Residue of Emulsified Asphalt by Low Temperature Vacuum Distillation