
【国外标准】 Standard Test Method for Length Change of Concrete Due to Alkali-Carbonate Rock Reaction
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 Two types of alkali reactivity of aggregates have been described in the literature: the alkali-silica reaction involving certain siliceous rocks, minerals, and artificial glasses (1),3 and the alkali-carbonate reaction involving dolomite in certain calcitic dolomites and dolomitic limestones (2). This test method is not recommended as a means to detect combinations susceptible to expansion due to alkali-silica reaction since it was not evaluated for this use in the work reported by Buck (2). This test method is not applicable to aggregates that do not contain or consist of carbonate rock (see Descriptive Nomenclature C294).4.2 This test method is intended for evaluating the behavior of specific combinations of concrete-making materials to be used in the work. However, provisions are made for the use of substitute materials when required. This test method assesses the potential for expansion of concrete caused by alkali-carbonate rock reaction from tests performed under prescribed laboratory curing conditions that will probably differ from field conditions. Thus, actual field performance will not be duplicated due to differences in wetting and drying, temperature, other factors, or combinations of these (see Appendix X1).4.3 Use of this test method is of particular value when samples of aggregate from a source have been determined to contain constituents that are regarded as capable of participation in a potentially deleterious alkali-carbonate rock reaction either by petrographic examination, Guide C295/C295M, by the rock cylinder test, Test Method C586, by service record; or by a combination of these.4.4 Results of tests conducted as described herein should form a part of the basis for a decision as to whether precautions be taken against excessive expansion due to alkali-carbonate rock reaction. This decision should be made before a particular cement-aggregate combination is used in concrete construction (see Note 1).NOTE 1: Other elements that may be included in the decision-making process for categorizing an aggregate or a cement-aggregate combination with respect to whether precautions are needed, and examples of precautions that may be taken, are described in Appendix X1.4.5 While the basic intent of this test method is to develop information on a particular cement-aggregate combination, it will usually be very useful to conduct control tests in parallel using the aggregate of interest with other cements or the cement of interest with other aggregates.1.1 This test method covers the determination, by measurement of length change of concrete prisms, the susceptibility of cement-aggregate combinations to expansive alkali-carbonate reaction involving hydroxide ions associated with alkalies (sodium and potassium) and certain calcitic dolomites and dolomitic limestones.1.2 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.3 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard. When combined standards are cited, the selection of measurement system is at the user's discretion subject to the requirements of the referenced standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C1105-23
标准名称:
Standard Test Method for Length Change of Concrete Due to Alkali-Carbonate Rock Reaction
英文名称:
Standard Test Method for Length Change of Concrete Due to Alkali-Carbonate Rock Reaction标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 3350.2.23:2001/Amdt 2:2004 Safety of household and similar electrical appliances - Particular requirements for appliances for skin and hair care
- AS/NZS 3350.2.23:2001/Amdt 4:2008 Safety of household and similar electrical appliances Particular requirements for skin or hair care
- AS/NZS 4266.23:1996 Reconstituted wood-based panels - Methods of test Determination of resistance to steam
- AS/NZS 61558.2.23:2001 Safety of power transformers, power supply units and similar devices - Particular requirements for transformers for construction sites (IEC 61558-2-23:2000, MOD)
- AS/NZS 61558.2.23:2011 (IEC TEXT)/Amdt 1:2012 Safety of Power Transformers, Power Supplies, Reactors and combinations thereof Particular requirements and tests for transformers and power supply units for construction sites
- AS/NZS 61558.2.23:2011/Amdt 1:2012 Safety of Power Transformers, Power Supplies, Reactors and combinations thereof Particular requirements and tests for transformers and power supply units for construction sites
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium