
【国外标准】 Standard Practice for Gravimetric Calibration of Laboratory Volumetric Instruments
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
1.1 This practice covers procedures for use in the calibration of volumetric instruments that include glassware, plasticware, and laboratory standards that are in common use in chemical, analytical, clinical, and calibration laboratories. It is based on the gravimetric determination of the quantity of pure water, either contained or delivered at a calibration temperature, and the conversion of this value to a volume at a given reference temperature, normally 20 °C by means of suitable equations. Calibration using mercury is excluded. Calibration may be performed using alternative gravimetric methodology, if it is demonstrated and documented that the results obtained are equivalent to those obtained using the methodology described herein. Alternative reference temperatures and associated equations are provided.1.2 This practice is intended to encompass volume capacity instruments between the limits of 0.1 cm3 and 10 000 cm3. Typical volumetric instruments falling within the purview of this practice are burettes graduated “to deliver,” graduated cylinders, volumetric flasks, measuring and dilution pipettes, transfer and capacity pipettes such as those in Specification E694, specific gravity flasks such as those used in several ASTM standards, and metallic volumetric standards such as those used in legal metrology.1.3 The procedures are not recommended for calibration of volumetric instruments with capacities below 0.1 cm3, such as microglassware without incorporating evaporation corrections; evaporation methods and corrections are not provided. Capacities given in 1.2 are not intended to be maximum capacity limitations; volumes greater than 10 000 cm3 may be calibrated with this procedure. Maximum capacity limitations are based on available equipment, standards, adequate quantities of pure water, and the ability to safely handle large volumetric instruments.1.4 This standard may be used for the calibration of volumetric instruments made from materials of glass, plastic, various stable metals, or any other stable materials provided appropriate volumetric coefficients of expansions are available.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E542-22
标准名称:
Standard Practice for Gravimetric Calibration of Laboratory Volumetric Instruments
英文名称:
Standard Practice for Gravimetric Calibration of Laboratory Volumetric Instruments标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 1462.22:1997 Methods of test for plastics pipes and fittings Method for the determination of pipe stiffness
- AS/NZS 2341.22:1996 (R2013) Methods of testing bitumen and related roadmaking products Determination of particle charge
- AS/NZS 4266.22:1996 Reconstituted wood-based panels - Methods of test Determination of porosity of laminated surface
- AS/NZS 60745.2.22:2011/Amdt 1:2012 Hand-held motor-operated electric tools Safety - Particular requirements for cut-off machines (IEC 60745-2-22 Ed 1, MOD)
- AS/NZS CISPR 22:2004 Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
- AS/NZS IEC 60670.22:2012 Boxes and enclosures for electrical accessories for household and similar fixed electrical installations Particular requirements for connecting boxes and enclosures
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium