
【国外标准】 Standard Guide for Use of Cable-Tool Drilling and Sampling Methods for Geoenvironmental Exploration and Installation of Subsurface Water Quality Monitoring Devices
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 Cable-tool rigs (also referred to as churn rigs, water-well drilling rigs, spudders, or percussion rigs) are used in the oil fields and in the water-well industry. The Chinese developed the percussion method some 4,000 years ago.4.2 Cable-tool drilling and sampling methods may be used in support of geoenvironmental exploration and for installation of subsurface water quality monitoring devices in both unconsolidated and consolidated materials. Cable-tool drilling and sampling may be selected over other methods based on its advantages, some of which are its high mobility, low water use, low operating cost, and low maintenance. Cable-tool drilling is the most widely available casing-advancement method that is restricted to the drilling of unconsolidated sediment and softer rocks.4.2.1 The application of cable-tool drilling and sampling to geoenvironmental exploration may involve sampling unconsolidated materials. Depth of drill holes may exceed 900 m [3000 ft] and may be limited by the length of cable attached to the bull reel. However, most drill holes for geoenvironmental exploration rarely are needed to go that deep. Rates for cable-tool drilling and sampling can vary from a general average of as much as 7.5 to 9 m/h [25 to 30 ft/h] including setting 200 mm [8 in.] diameter casing to considerably less than that depending on the type(s) of material drilled, and the type and condition of the equipment and rig used.NOTE 2: As a general rule, cable-tool rigs are used to sample the surficial sediments (that is, overburden), and to set surface casing in order that rotary-core rigs subsequently may be set up on the drill hole to core drill hard rock if coring is needed.NOTE 3: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/evaluation/and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.4.2.2 The cable-tool rig may be used to facilitate the installation of a subsurface water quality monitoring device(s) including in situ testing devices. The monitoring device(s) may be installed through the casing as the casing is removed from the borehole. The sand line can be used to raise, lower, or set in situ testing device(s). If necessary, the casing may also be left in the borehole as part of the device.NOTE 4: The user may install a monitoring device within the same borehole wherein sampling, in situ, or pore-fluid testing, or coring was performed.1.1 This guide covers cable-tool drilling and sampling procedures used for geoenvironmental exploration and installation of subsurface water quality monitoring devices.1.2 Several sampling methods exist for obtaining samples from drill holes for geoenvironmental purposes and subsequent laboratory testing. Selection of a particular drilling procedure should be made on the basis of sample types needed and geohydrologic conditions observed at the study site.1.3 Drilling procedures for geoenvironmental exploration often will involve safety planning, administration and documentation. This guide does not purport to specifically address exploration and site safety.NOTE 1: This guide does not include considerations for geotechnical site characterizations.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D5875/D5875M-18
标准名称:
Standard Guide for Use of Cable-Tool Drilling and Sampling Methods for Geoenvironmental Exploration and Installation of Subsurface Water Quality Monitoring Devices
英文名称:
Standard Guide for Use of Cable-Tool Drilling and Sampling Methods for Geoenvironmental Exploration and Installation of Subsurface Water Quality Monitoring Devices标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D5874-16 Standard Test Methods for Determination of the Impact Value (IV) of a Soil
- 下一篇: ASTM D5876/D5876M-17 Standard Guide for Use of Direct Rotary Wireline Casing Advancement Drilling Methods for Geoenvironmental Exploration and Installation of Subsurface Water-Quality Monitoring Devices
- 推荐标准
- ASTM E2356-18 Standard Practice for Comprehensive Building Asbestos Surveys
- ASTM E2358-17 Standard Specification for Performance of Glazing in Permanent Railing Systems, Guards, and Balustrades
- ASTM E236-66(2022) Standard Specification for Apparatus for Microdetermination of Alkoxyl Groups
- ASTM E2361-13(2021) Standard Guide for Testing Leave-On Products Using In-Situ Methods
- ASTM E2362-22 Standard Practice for Evaluation of Pre-saturated or Impregnated Towelettes for Hard Surface Disinfection
- ASTM E2363-23 Standard Terminology Relating to Manufacturing of Pharmaceutical and Biopharmaceutical Products in the Pharmaceutical and Biopharmaceutical Industry
- ASTM E2365-21 Standard Guide for Environmental Compliance Performance Assessment
- ASTM E237-02(2024) Standard Specification for Laboratory Glass Microvolumetric Vessels (Volumetric Flasks and Centrifuge Tubes)
- ASTM E2373/E2373M-19 Standard Practice for Use of the Ultrasonic Time of Flight Diffraction (TOFD) Technique
- ASTM E2374-16(2021) Standard Guide for Acoustic Emission System Performance Verification
- ASTM E2375-22 Standard Practice for Ultrasonic Testing of Wrought Products
- ASTM E2380/E2380M-15(2019) Standard Test Method for Measuring Pavement Texture Drainage Using an Outflow Meter
- ASTM E2385-11(2016) Standard Guide for Estimating Wildlife Exposure Using Measures of Habitat Quality
- ASTM E2386-04(2017) Standard Guide for Conduct of PDD Screening Examinations
- ASTM E2387-19 Standard Practice for Goniometric Optical Scatter Measurements