
【国外标准】 Standard Test Method for Measurement of Glass Dissolution Rate Using Stirred Dilute Reactor Conditions on Monolithic Samples
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method provides a description of the design of the Stirred Reactor Coupon Analysis (SRCA) apparatus and identifies aspects of the performance of the SRCA tests and interpretation of the test results that must be addressed by the experimenter to provide confidence in the measured dissolution rate.5.2 The SRCA methods described in this test method can be used to characterize several aspects of glass corrosion that can be included in mechanistic models of long-term durability of glasses, including nuclear waste glasses.5.3 Depending on the test parameters investigated, the SRCA results can be used to measure the intrinsic dilute glass dissolution rate, as well as the effects of conditions such as temperature, pH, and solution chemistry on the dissolution rate.5.4 Due to the scalable nature of the method, it is particularly applicable to studies of the impact of glass composition on dilute-condition corrosion. Models of glass behavior can be parameterized by testing glass composition matrices and establishing quantitative structure-property relationships.5.5 The step heights present on the corroded sample can be measured by a variety of techniques including profilometry (optical or stylus), atomic force microscopy, interferometry or other techniques capable of determining relative depths on a sample surface. The sample can also be interrogated with other techniques such as scanning electron microscopy to characterize the corrosion behavior. These further analyses can determine if the sample corroded homogenously and possible formation of secondary phases or leached layers. Occurrence of these features may impact the accuracy of glass dissolution. This test method does not address these solid-state characterizations.1.1 This test method describes a test method in which the dissolution rate of a homogenous silicate glass is measured through corrosion of monolithic samples in stirred dilute conditions.1.2 Although the test method was designed for simulated nuclear waste glass compositions per Guide C1174, the method is applicable to glass compositions for other applications including, but not limited to, display glass, pharmaceutical glass, bioglass, and container glass compositions.1.3 Various test solutions can be used at temperatures less than 100 °C. While the durability of the glass can be impacted by dissolving species from the glass, and thus the test can be conducted in dilute conditions or concentrated condition to determine the impact of such species, care must be taken to avoid, acknowledge, or account for the production of alteration layers which may confound the step height measurements.1.4 The dissolution rate measured by this test is, by design, an average of all corrosion that occurs during the test. In dilute conditions, glass is assumed to dissolve congruently and the dissolution rate is assumed to be constant.1.5 Tests are carried out via the placement of the monolithic samples in a large well-mixed volume of solution, achieving a high volume to surface area ratio resulting in dilute conditions with agitation of the solution.1.6 This test method excludes test methods using powdered glass samples, or in which the reactor solution saturates with time. Glass fibers may be used without a mask if the diameter is known to high accuracy before the test.1.7 Tests may be conducted with ASTM Type I water (see Specification D1193 and Terminology D1129), buffered water or other chemical solutions, simulated or actual groundwaters, biofluids, or other dissolving solutions.1.8 Tests are conducted with monolithic glass samples with at least a single flat face. Although having two plane-parallel faces is helpful for certain step height measurements, it is not required. The geometric dimensions of the monolith are not required to be known. The reacted monolithic sample is to be analyzed following the reaction to measure a corroded depth to determine dissolution rate.1.9 Tests may be performed with radioactive samples. However, safety concerns working with radionuclides are not addressed in this test method.1.10 Data from these tests can be used to determine the value of kinetic rate model parameters needed to predict glass corrosion behavior over long periods of time. For an example, see Practice C1662, section 9.5.1.11 This test method must be performed in accordance with all quality assurance requirements for acceptance of the data.1.12 Units—The values stated in SI units are regarded as the standard. Any values given in parentheses are for information only.1.13 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.14 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C1926-23
标准名称:
Standard Test Method for Measurement of Glass Dissolution Rate Using Stirred Dilute Reactor Conditions on Monolithic Samples
英文名称:
Standard Test Method for Measurement of Glass Dissolution Rate Using Stirred Dilute Reactor Conditions on Monolithic Samples标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM B1-13(2018) Standard Specification for Hard-Drawn Copper Wire
- ASTM B100-20 Standard Specification for Wrought Copper-Alloy Bearing and Expansion Plates and Sheets for Bridge and Other Structural Use
- ASTM B1002-16(2020) Standard Specification for Refined Indium
- ASTM B1003-16(2023) Standard Specification for Seamless Copper Tube for Linesets
- ASTM B1004-16(2022) Standard Practice for Contact Performance Classification of Electrical Connection Systems
- ASTM B1005-17(2023) Standard Specification for Copper-Clad Aluminum Bar for Electrical Purposes (Bus Bar)
- ASTM B1008-18 Standard Test Method for Stress-Strain Testing for Overhead Electrical Conductors
- ASTM B1010/B1010M-19 Standard Specification for Copper-Clad Steel Electrical Conductor for Tracer Wire Applications
- ASTM B1011/B1011M-22 Standard Specification for Cobalt Alloy Spring Wire
- ASTM B1013-22 Standard Specification for High Fluidity (HF) Zinc-Aluminum Alloy Thin Wall Die Castings
- ASTM B1014-20 Standard Specification for Welded Copper and Copper Alloy Condenser and Heat Exchanger Tubes with a Textured Surface(s)
- ASTM B1019-21 Standard Test Method for Determination of Surface Oxides on Copper Rod(for Electrical Purposes)
- ASTM B1020/B1020M-22 Standard Specification for Seamless Nickel Alloy Mechanical Tubing and Hollow Bar
- ASTM B1021-21 Standard Test Method for Peel Resistance of Metal Sheets Joined by High Strength Bonds
- ASTM B1022-22 Standard Specification for Zinc-Aluminum-Magnesium Alloys in Ingot Form for Coating Steel Sheet by the Hot-Dip Process