
【国外标准】 Standard Test Method for Determining a Measured Nameplate Recovery Rate of Stationary Oil Skimmer Systems
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 It has been industry practice to claim the capacity of a skimmer based on the rate of the discharge pump (which are typically rated using water as a test fluid) or other arbitrary methods.4.2 End users need a test methodology that evaluates optimum performance data for planning and selection of equipment.4.3 This test method will assist producers and other stakeholders to verify and accurately report skimmer system performance.4.4 This test method is specifically designed to quantify two key skimmer performance values, to reduce testing costs, and to encourage industry wide performance standardization.4.5 This test method establishes test conditions that will result in a measured nameplate recovery rate and an indication of the combination of test parameters (oil type, viscosity, operating speed) that result in the highest average performance for the tested skimmer system.4.6 This test method will validate the performance of the discharge pump in the skimmer system, under conditions that are typical of a recovery operation. Specifically, this will include a modest imposed head pressure composed of static head and dynamic friction losses due to a specified length of discharge hose.4.7 This test method encourages performance testing using two or more oils for comparison purposes.4.8 Tests shall be conducted under well-documented conditions and generate repeatable results. More detailed testing and collection of skimmer performance is covered under existing standards (for example, Guide F631).4.9 Testing (SL Ross 2007)3 has shown that, when water is present, recovery performance in slick thicknesses ranging from 50 mm to 75 mm results in values comparable to significantly thicker slicks. This may not be the case with high-rate skimmers in viscous oil, where the rate of oil recovery exceeds the rate at which the slick will flow to the skimmer mechanism.4.10 For skimming systems that include various options for the discharge pump, the test described in this test method may be used to measure the performance of the skimming component of the system. Performance of the pumping component can be measured independently using the same viscosity of oil and the discharge head conditions noted in this test method. The measured nameplate recovery rate of any specified skimming component and pump combination would be the lesser of the skimming component and the pump.1.1 This test method defines a method and measurement criteria to quantify the performance of a stationary skimmer in ideal conditions in support of a device’s nameplate recovery rate (capacity). If a determination of a skimmer’s capabilities in realistic conditions (that is, advancing or waves) is required, testing should be performed according to Guide F631 or equivalent.1.2 This test method includes the option of testing to determine recovery efficiency.1.3 This test method and parameters are intended to provide ideal recovery conditions allowing the skimmer system to operate and collect oil at its maximum possible recovery rate. Given ideal conditions, inherent mechanical and physical attributes of the system become the limiting factors.1.4 This test method is intended to identify limitations of the skimmer system, such as performance of the skimming mechanism, the flow of oil within the skimmer and sump, the pump characteristics, and typical discharge head conditions.1.5 It is accepted that the measured nameplate recovery rate as determined by this test method will not likely be achievable under actual conditions of a spill. The measured nameplate recovery rate should be used in conjunction with a de-rating factor to account for such issues as changing encounter rate, changes in other recovery conditions, changes in oil properties and slick thickness, number of daylight hours, operator downtime, less than ideal control of skimmer settings, and inclement weather.1.6 This test method involves the use of specific test oils that may be considered hazardous materials. It is the responsibility of the user of this test method to procure and abide by necessary permits and regulations for the use and disposal of test oil.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2709-19
标准名称:
Standard Test Method for Determining a Measured Nameplate Recovery Rate of Stationary Oil Skimmer Systems
英文名称:
Standard Test Method for Determining a Measured Nameplate Recovery Rate of Stationary Oil Skimmer Systems标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM F2707-10(2018)e1 Standard Safety Performance Specification for Safe Design and Installation of Field Fabricated Suction-Limiting Vent Systems for Suction Entrapment Prevention in Swimming Pools, Spas, Hot Tubs, and Wading Pools
- 下一篇: ASTM F2710-19 Standard Consumer Safety Performance Specification for Commercial Cribs
- 推荐标准
- INCITS/ISO/IEC 14496-19:2004 (R2019) Information technology - Coding of audio-visual objects - Part 19: Synthesized texture stream
- INCITS/ISO/IEC 23000-19:2020 (2021) Information technology - Multimedia application format (MPEG-A) - Part 19: Common media application format (CMAF) for segmented media
- ASTM D8137-18(2023) Practice for Accelerated Aging of Leather
- ASTM D8138-23 Standard Specification for Preformed Silicone Joint Sealing System for Bridges
- ASTM D8139-23 Standard Specification for Semi-Rigid, Closed-Cell Polypropylene Foam, Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction
- ASTM D814-95(2020) Standard Test Method for Rubber Property—Vapor Transmission of Volatile Liquids
- ASTM D8140-18(2023) Standard Guide for the Use of Foundry Sand in Asphalt Mixtures
- ASTM D8141-22 Standard Guide for Selecting Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) Emission Testing Methods to Determine Emission Parameters for Modeling of Indoor Environments
- ASTM D8144-22 Standard Test Method for Separation and Determination of Aromatics, Nonaromatics, and FAME Fractions in Middle Distillates by Solid-Phase Extraction and Gas Chromatography
- ASTM D8148-22 Standard Test Method for Spectroscopic Determination of Haze in Fuels
- ASTM D8149-20 Standard Practice for Optimization, Calibration, and Validation of Ion Chromatographic Determination of Heteroatoms and Anions in Petroleum Products and Lubricants
- ASTM D8150-22 Standard Test Method for Determination of Organic Chloride Content in Crude Oil by Distillation Followed by Detection Using Combustion Ion Chromatography
- ASTM D8152-18 Standard Practice for Measuring Field Infiltration Rate and Calculating Field Hydraulic Conductivity Using the Modified Philip Dunne Infiltrometer Test
- ASTM D8154-24 Standard Test Methods for 1H-NMR Determination of Ketone-Ethylene-Ester and Polyvinyl Chloride Contents in KEE-PVC Roofing Fabrics
- ASTM D8155-17(2023) Standard Practice for Shake Extraction of Solid Mining and Metallurgical Processing Waste with Water