
【国外标准】 Standard Guide for Forensic Analysis of Geological Materials by Powder X-Ray Diffraction
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The overarching goals of the forensic analysis of geological materials include (A) identification of an unknown material (see 11.3), (B) analysis of soils, sediments, or rocks to restrict their possible geographic origins as part of a provenance analysis (see 11.4), and (C) comparison of two or more samples to assess if they could have originated from the same source or to exclude a common source based on observation of exclusionary differences (see 11.5). XRD is only one analytical method that can be applied to the evidentiary samples in service of these distinct goals. Guidance for the analysis of forensic geological materials can be found in Refs (2-4).5.2 Within the analytical scheme of geological materials, XRD analysis is used to: identify the crystalline components within a sample; identify the crystalline components separated from a mixture, typically clay-sized material (see 8.8), or a selected particle class for which additional analysis is needed (see 8.11); or compare two or more samples based on the identified crystalline phases or diffraction patterns (see 11.5).5.2.1 Non-destructive XRD analysis can be performed in situ on geological material adhering to a substrate (see 8.12.3).5.2.2 The most common forensic applications of XRD to geological materials are (A) identification or confirmation of a selected phase or fraction of a sample (see 8.12), (B) identification of minerals in the clay-sized fractions of soils (see 8.8), and (C) identification of the phases of the hydrated cement component of concrete or mortar.5.3 This guide is intended to be used with other methods of analysis (for example, polarized light microscopy, scanning electron microscopy, palynology) within a more comprehensive analytical scheme for the forensic analysis or comparison of geological materials.5.3.1 Comprehensive criteria for forensic comparisons of geological material integrating multiple analytical methods and provenance estimations (see 11.4) are not included and are beyond the scope of this guide.1.1 This guide covers techniques and procedures for the use of powder X-ray diffraction (XRD) in the forensic analysis of geological materials (to include soils, rocks, sediments, and materials derived from them such as concrete), to enable non-consumptive identification of solid crystalline materials present as single components or multi-component mixtures.1.2 This guide makes recommendations for the preparation of geological materials for powder XRD analysis with adaptations for samples of limited quantity, instrumental configuration to generate high-quality XRD data, identification of crystalline materials by comparison to published diffraction data, and forensic comparison of XRD patterns from two or more samples of geological materials to support criminal investigations.1.3 Units—The values stated in SI units are to be regarded as standard. Other units are avoided, in general, but there is a long-standing tradition of expressing X-ray wavelengths and lattice spacing in units of Ångströms (Å). One Ångström = 10–10 meter (m) = 0.1 nanometer (nm).1.4 This standard is intended for use by competent forensic science practitioners with the requisite formal education, discipline-specific training (see Practice E2917), and demonstrated proficiency to perform forensic casework.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E3294-23
标准名称:
Standard Guide for Forensic Analysis of Geological Materials by Powder X-Ray Diffraction
英文名称:
Standard Guide for Forensic Analysis of Geological Materials by Powder X-Ray Diffraction标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 1462.23:1997 Methods of test for plastics pipes and fittings Method for determination of ring flexibility
- AS/NZS 3350.2.23:2001/Amdt 2:2004 Safety of household and similar electrical appliances - Particular requirements for appliances for skin and hair care
- AS/NZS 3350.2.23:2001/Amdt 4:2008 Safety of household and similar electrical appliances Particular requirements for skin or hair care
- AS/NZS 4266.23:1996 Reconstituted wood-based panels - Methods of test Determination of resistance to steam
- AS/NZS 61558.2.23:2001 Safety of power transformers, power supply units and similar devices - Particular requirements for transformers for construction sites (IEC 61558-2-23:2000, MOD)
- AS/NZS 61558.2.23:2011 (IEC TEXT)/Amdt 1:2012 Safety of Power Transformers, Power Supplies, Reactors and combinations thereof Particular requirements and tests for transformers and power supply units for construction sites
- AS/NZS 61558.2.23:2011/Amdt 1:2012 Safety of Power Transformers, Power Supplies, Reactors and combinations thereof Particular requirements and tests for transformers and power supply units for construction sites
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications