
【国外标准】 Standard Test Method for Determination of Indicated Cetane Number (ICN) of Diesel Fuel Oils using a Constant Volume Combustion Chamber—Reference Fuels Calibration Method
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The ICN value determined by this test method provides a measure of the ignition characteristics of diesel fuel oil used in compression ignition engines.5.2 This test can be used by engine manufacturers, petroleum refiners, fuel producers and in commerce as a specification aid to relate or match fuels and engines.5.3 The relationship of diesel fuel ICN determinations to the full scale, variable speed, variable load diesel engine is not completely understood.5.4 This test can be applied to non-conventional diesel fuels.5.5 This test determines ICN; it requires a sample of approximately 40 mL and a test time of approximately 25 min.5.6 This test method is based on the Energy Institute Test Method IP 617.1.1 This test method covers the quantitative determination of the indicated cetane number (ICN) of conventional diesel fuel oils, and diesel fuel oils containing cetane number improver additives; it is applicable to products typical of Specification D975, Grades No.1-D and 2-D diesel fuel oils, European standard EN 590, and Canadian standards CAN/CGSB-3.517 and CAN/CGSB-3.520. The test method is also applicable to biodiesel, blends of diesel fuel oils containing biodiesel material (for example, materials as specified in Specifications D975, D6751, D7467 and European standards EN 14214, EN 16734, and EN 16709), diesel fuels from non-petroleum origin, hydrocarbon oils, diesel fuel oil blending components, aviation turbine fuels, and polyoxymethylene dimethyl ether (OME).1.2 This test method utilizes a constant volume combustion chamber (CVCC) with direct fuel injection into heated compressed air. The apparatus is calibrated using blends of reference fuels. ICN is determined directly from ignition delay using an instrument specific reference fuel calibration curve.1.3 This test method and its precision cover the calibrated range of 35 ICN to 85 ICN, inclusive. The analyzer can measure ICN outside the calibrated range, but the precision has not been determined.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Some specific hazards statements are given in Section 7 on Hazards.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D8183-22
标准名称:
Standard Test Method for Determination of Indicated Cetane Number (ICN) of Diesel Fuel Oils using a Constant Volume Combustion Chamber—Reference Fuels Calibration Method
英文名称:
Standard Test Method for Determination of Indicated Cetane Number (ICN) of Diesel Fuel Oils using a Constant Volume Combustion Chamber—Reference Fuels Calibration Method标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- INCITS 22-1983 (S2021) Recorded Magnetic Tape for Information Interchange (800 CPI, NRZI)
- INCITS/ISO/IEC 14496-22:2019 (2019) Information technology -- Coding of audio-visual objects -- Part 22: Open Font Format
- INCITS/ISO/IEC 23000-22:2019/AM1:2021 (2022) Information technology - Multimedia application format (MPEG-A) - Part 22: Multi-image application format (MIAF) - Amendment 1: Reference software and conformance for multi-image application format
- ASTM D8137-18(2023) Practice for Accelerated Aging of Leather
- ASTM D8138-23 Standard Specification for Preformed Silicone Joint Sealing System for Bridges
- ASTM D8139-23 Standard Specification for Semi-Rigid, Closed-Cell Polypropylene Foam, Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction
- ASTM D814-95(2020) Standard Test Method for Rubber Property—Vapor Transmission of Volatile Liquids
- ASTM D8140-18(2023) Standard Guide for the Use of Foundry Sand in Asphalt Mixtures
- ASTM D8141-22 Standard Guide for Selecting Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) Emission Testing Methods to Determine Emission Parameters for Modeling of Indoor Environments
- ASTM D8144-22 Standard Test Method for Separation and Determination of Aromatics, Nonaromatics, and FAME Fractions in Middle Distillates by Solid-Phase Extraction and Gas Chromatography
- ASTM D8148-22 Standard Test Method for Spectroscopic Determination of Haze in Fuels
- ASTM D8149-20 Standard Practice for Optimization, Calibration, and Validation of Ion Chromatographic Determination of Heteroatoms and Anions in Petroleum Products and Lubricants
- ASTM D8150-22 Standard Test Method for Determination of Organic Chloride Content in Crude Oil by Distillation Followed by Detection Using Combustion Ion Chromatography
- ASTM D8152-18 Standard Practice for Measuring Field Infiltration Rate and Calculating Field Hydraulic Conductivity Using the Modified Philip Dunne Infiltrometer Test
- ASTM D8154-24 Standard Test Methods for 1H-NMR Determination of Ketone-Ethylene-Ester and Polyvinyl Chloride Contents in KEE-PVC Roofing Fabrics