
【国外标准】 Standard Test Methods for Permeability of Weakly Magnetic Materials
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
3.1 This test method is suitable for specification acceptance, design purposes, service evaluation, regulatory statutes, manufacturing control, and research and development.3.2 Because of the restrictions on the specimen shape and size, this test method is most often used to evaluate semifinished product before fabrication of parts.1.1 These test methods cover four procedures for determination of the permeability [relative permeability]2 of materials having a relative permeability not exceeding 6.0.1.2 The test methods covered are as follows:1.2.1 Test Method 1—Fluxmetric Method is suitable for materials with relative permeabilities between 1.0 and 4.0. This method permits the user to select the magnetic field strength at which the permeability is to be measured.1.2.2 Test Method 2—Permeability of Paramagnetic Materials has been eliminated as an acceptable method of test.1.2.3 Test Method 3—Low Mu Permeability Indicator is suitable for measuring the permeability of a material as “less than” or “greater than” that of calibrated standard inserts with relative permeabilities between 1.01 and 6.0, as designated for use in a Low-Mu Permeability Indicator.3 In this method, a small volume of specimen is subjected to a local magnetic field that varies in magnitude and direction, so it is not possible to specify the magnetic field strength at which the measurement is made.1.2.4 Test Method 4—Flux Distortion is suitable for materials with relative permeabilities between 1.0 and 2.0. In this method, a small volume of specimen is subjected to a local magnetic field that varies in magnitude and direction, so it is not possible to specify the magnetic field strength at which the measurement is made.41.2.5 Test Method 5—Vibrating Sample Magnetometry is suitable for materials with relative permeabilities between 1.0 and 4.0. This test method permits the user to select the magnetic field strength at which the permeability is to be measured.1.3 Materials typically tested by these methods such as austenitic stainless steels may be weakly ferromagnetic. That is, the magnetic permeability is dependent on the magnetic field strength. As a consequence, the results obtained using the different methods may not closely agree with each other. When using Methods 1 and 5, it is imperative to specify the magnetic field strength or range of magnetic field strengths at which the permeabilities have been determined.1.4 The values and equations stated in customary (cgs-emu and inch-pound) or SI units are to be regarded separately as standard. Within this standard, SI units are shown in brackets except for the sections concerning calculations where there are separate sections for the respective unit systems. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM A342/A342M-21
标准名称:
Standard Test Methods for Permeability of Weakly Magnetic Materials
英文名称:
Standard Test Methods for Permeability of Weakly Magnetic Materials标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM A341/A341M-16(2022) Standard Test Method for Direct Current Magnetic Properties of Soft Magnetic Materials Using D-C Permeameters and the Point by Point (Ballistic) Test Methods
- 下一篇: ASTM A343/A343M-14(2019) Standard Test Method for Alternating-Current Magnetic Properties of Materials at Power Frequencies Using Wattmeter-Ammeter-Voltmeter Method and 25-cm Epstein Test Frame
- 推荐标准
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes
- ASTM A102-04(2019) Standard Specification for Ferrovanadium
- ASTM A1021/A1021M-20 Standard Specification for Martensitic Stainless Steel Forgings and Forging Stock for High-Temperature Service