
【国外标准】 Standard Test Method to Evaluate Edge Binding Components Used in Mattresses After Exposure to An Open Flame
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method evaluates the edge binding assembly used to determine how well the two external elements along the mattress edge, essentially, the edge tape and FR sewing thread, behave after exposure to an open flame and a hot air oven. These data can be used to confirm that either the mattress or foundation, or both will pass when tested using 16 CFR1633. Evaluation of raw material components is a vital and ongoing part of any manufacturing operation, especially when each item can contribute to the technical performance of the final product.5.2 Inherently flame resistant (FR) sewing thread is used as shown in Fig. 1, Fig. 2, and Fig. 3 to secure and encapsulate the following elements:FIG. 1 Mattress Edge Bound Sample – ProfileFIG. 2 Before Trimming – ProfileFIG. 3 After Trimming – Profile5.2.1 Test method measures the behavior of mattress edge binding tape that joins and closes the assembly of either the mattress or the box spring foundation, or both, and sewing thread during and after exposure to an open flame ignition source.5.2.2 Test method can be used to determine if the encapsulated multilayer assembly of mattress cover, fire barrier, and foam (when used) work together to prevent entry of open flame to mattress interior.5.3 Flame resistance of the components used to close the perimeter of a mattress is an important factor in limiting the potential of a bedding fire by preventing the chance for seam failure.5.4 Data which show a correlation of behavior for both the sewing thread and edge binding tape, when tested as a subassembly according to this test method, and also when tested using a full scale composite mattress burn test, such as 16 CFR 1633, can provide the manufacturer with important information. These data can be valuable when selecting components to be used in the manufacture of its products which are designed to use mattress edge binding and sewing thread.5.5 The level of performance required for these components is (1) that they do not support the afterflame, and (2) that these components demonstrate post flame exposure characteristics which contribute to retaining the structural integrity of the subassembly.5.6 In case of a dispute arising from differences in reported results when using this test method for acceptance testing of commercial shipments, the purchaser and the supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens which are as homogeneous as possible and which are from a lot of material of the type in question. The test specimens should then be sent to each laboratory for testing. The average results from the two laboratories should be compared using Student's t-test and an acceptable probability level chosen by the two parties before testing is begun. If a bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results with consideration of known bias.1.1 This test method measures the flammability characteristics of mattress edge bindings and sewing threads during and after exposure to an open flame ignition source.1.1.1 This test method is used to evaluate these components either independently or in combination for use in mattresses designed with a fire barrier fabric.1.1.1.1 The test method is used to evaluate mattress edge binding and sewing thread when the design requires the use of these components.1.1.2 This test method can be used as a screening test method to determine how sewing thread and mattress edge binding component combinations will perform.1.2 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.3 Fire testing of products and materials is inherently hazardous, and adequate safeguards for personnel and property shall be employed in conducting these tests.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7016/D7016M-20
标准名称:
Standard Test Method to Evaluate Edge Binding Components Used in Mattresses After Exposure to An Open Flame
英文名称:
Standard Test Method to Evaluate Edge Binding Components Used in Mattresses After Exposure to An Open Flame标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM B1-13(2018) Standard Specification for Hard-Drawn Copper Wire
- ASTM B100-20 Standard Specification for Wrought Copper-Alloy Bearing and Expansion Plates and Sheets for Bridge and Other Structural Use
- ASTM B1002-16(2020) Standard Specification for Refined Indium
- ASTM B1003-16(2023) Standard Specification for Seamless Copper Tube for Linesets
- ASTM B1004-16(2022) Standard Practice for Contact Performance Classification of Electrical Connection Systems
- ASTM B1005-17(2023) Standard Specification for Copper-Clad Aluminum Bar for Electrical Purposes (Bus Bar)
- ASTM B1008-18 Standard Test Method for Stress-Strain Testing for Overhead Electrical Conductors
- ASTM B1010/B1010M-19 Standard Specification for Copper-Clad Steel Electrical Conductor for Tracer Wire Applications
- ASTM B1011/B1011M-22 Standard Specification for Cobalt Alloy Spring Wire
- ASTM B1013-22 Standard Specification for High Fluidity (HF) Zinc-Aluminum Alloy Thin Wall Die Castings
- ASTM B1014-20 Standard Specification for Welded Copper and Copper Alloy Condenser and Heat Exchanger Tubes with a Textured Surface(s)
- ASTM B1019-21 Standard Test Method for Determination of Surface Oxides on Copper Rod(for Electrical Purposes)
- ASTM B1020/B1020M-22 Standard Specification for Seamless Nickel Alloy Mechanical Tubing and Hollow Bar
- ASTM B1021-21 Standard Test Method for Peel Resistance of Metal Sheets Joined by High Strength Bonds
- ASTM B1022-22 Standard Specification for Zinc-Aluminum-Magnesium Alloys in Ingot Form for Coating Steel Sheet by the Hot-Dip Process