
【国外标准】 Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter (Withdrawn 2024)
本网站 发布时间:
2024-02-28
- ASTM D5856-15
- Withdrawn, No replacement
- 定价: 0元 / 折扣价: 0 元
- 在线阅读
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 This test method applies to one-dimensional, laminar flow of water within laboratory-compacted, porous materials such as soil.4.2 The hydraulic conductivity of porous materials generally decreases with an increasing amount of air in the pores of the material. This test method applies to porous materials containing little or no air. The test method is designed to minimize the amount of air in the test specimen. However, this test method does not ensure complete saturation of the test specimen with water. In cases where it is essential to saturate the test specimen fully with water, the compacted specimen may be tested using Test Method D5084.4.3 This test method applies to permeation of porous materials with water. Permeation with other liquids, such as chemical wastes, can be accomplished using procedures similar to those described in this test method. However, this test method is only intended to be used when water is the permeant liquid.4.4 It is assumed that Darcy's law is valid and that the hydraulic conductivity is essentially unaffected by hydraulic gradient. The validity of Darcy’s law may be evaluated by measuring the hydraulic conductivity of the specimen at three hydraulic gradients; if all measured values are similar (within 25 %), then Darcy’s law may be taken as valid. However, when the hydraulic gradient acting on a test specimen is changed, the state of stress will also change, and, if the specimen or pore fluid is compressible, the volume of the test specimen or pore fluid will change. Thus, some change in hydraulic conductivity may occur when the hydraulic gradient is altered, even in cases where Darcy’s law is valid.4.5 One potential problem with this method of testing is the possibility that water will flow along the interface between the test specimen and the compaction/permeameter ring. The problem tends to be of minimal significance for materials that swell when exposed to water (for example, compacted, clayey soils) but can be a very serious problem for materials that might tend to shrink and pull away from the walls of the permeameter. Test Method D5084 is recommended for any material that tends to shrink when exposed to the permeant liquid.4.6 The correlation between results obtained with this test method and the hydraulic conductivities of in-place, compacted materials has not been fully investigated. Experience has sometimes shown that flow patterns in small, laboratory-prepared test specimens do not necessarily follow the same patterns on large field scales and that hydraulic conductivities measured on small test specimens are not necessarily the same as larger-scale values. Therefore, the results should be applied to field situations with caution and by qualified personnel.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers laboratory measurement of the hydraulic conductivity (also referred to as coefficient of permeability) of laboratory-compacted materials with a rigid-wall, compaction-mold permeameter.1.2 This test method may be used with laboratory-compacted specimens that have a hydraulic conductivity less than or equal to 1 × 10−5 m/s. The hydraulic conductivity of compacted materials that have hydraulic conductivities greater than 1 × 10−5 m/s may be determined by Test Method D2434.1.3 Units—The values stated in SI units are to be regarded as the standard, unless other units are specifically given. By tradition in U.S. practice, hydraulic conductivity is reported in cm/s, although the common SI units for hydraulic conductivity are m/s.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
标准号:
ASTM D5856-15
标准名称:
Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter (Withdrawn 2024)
英文名称:
Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter (Withdrawn 2024)标准状态:
Withdrawn, No replacement-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D5855/D5855M-20 Standard Practice for (Analytical Procedure) Determining Transmissivity and Storage Coefficient of Confined Nonleaky or Leaky Aquifer by Constant Drawdown Method in Flowing Well
- 下一篇: ASTM D5857-17(2024) Standard Specification for Polypropylene Injection and Extrusion Materials Using ISO Protocol and Methodology
- 推荐标准
- ASTM E2356-18 Standard Practice for Comprehensive Building Asbestos Surveys
- ASTM E2358-17 Standard Specification for Performance of Glazing in Permanent Railing Systems, Guards, and Balustrades
- ASTM E236-66(2022) Standard Specification for Apparatus for Microdetermination of Alkoxyl Groups
- ASTM E2361-13(2021) Standard Guide for Testing Leave-On Products Using In-Situ Methods
- ASTM E2362-22 Standard Practice for Evaluation of Pre-saturated or Impregnated Towelettes for Hard Surface Disinfection
- ASTM E2363-23 Standard Terminology Relating to Manufacturing of Pharmaceutical and Biopharmaceutical Products in the Pharmaceutical and Biopharmaceutical Industry
- ASTM E2365-21 Standard Guide for Environmental Compliance Performance Assessment
- ASTM E237-02(2024) Standard Specification for Laboratory Glass Microvolumetric Vessels (Volumetric Flasks and Centrifuge Tubes)
- ASTM E2373/E2373M-19 Standard Practice for Use of the Ultrasonic Time of Flight Diffraction (TOFD) Technique
- ASTM E2374-16(2021) Standard Guide for Acoustic Emission System Performance Verification
- ASTM E2375-22 Standard Practice for Ultrasonic Testing of Wrought Products
- ASTM E2380/E2380M-15(2019) Standard Test Method for Measuring Pavement Texture Drainage Using an Outflow Meter
- ASTM E2385-11(2016) Standard Guide for Estimating Wildlife Exposure Using Measures of Habitat Quality
- ASTM E2386-04(2017) Standard Guide for Conduct of PDD Screening Examinations
- ASTM E2387-19 Standard Practice for Goniometric Optical Scatter Measurements