
【国外标准】 Standard Specification for Amorphous Poly(lactide) and Poly(lactide-co-glycolide) Resins for Surgical Implants
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
This specification covers amorphous poly(lactide) and poly(lactide-co-glycolide) resins used in the manufacture of surgical implants. Materials covered by this specification are virgin poly(lactide) and poly(lactide-co-glycolide) resins that can be fully solvated at room temperature by methylene chloride (dichloromethane) or chloroform (trichloromethane). The poly(d,l-lactide) homopolymers are amorphous and shall be composed of meso-lactide or equimolar (racemic) combinations of d-lactide and l-lactide. The poly(d,l-lactide-co-glycolide) copolymers are amorphous and shall be composed of a combination of glycolide and either meso-lactide or a racemic combination of d-lactide and l-lactide. The resins shall be manufactured in pellet, granular, powder, flake, or other form and shall conform to the chemical and physical property requirements specified. Tests for chemical identification (by infrared, proton nuclear magnetic resonance, and carbon-13 nuclear magnetic resonance spectroscopy), specific rotation, molar mass, and residual monomer, residual solvent, and heavy metal content shall be performed and shall conform to the requirements specified. Additional tests for residual catalyst and residual water content may be performed as well.1.1 This specification covers virgin amorphous poly(lactide) homopolymer and poly(lactide-co-glycolide) copolymer resins intended for use in surgical implants. The poly(dl-lactide) homopolymers covered by this specification are considered to be amorphous (that is, void of crystallinity) and are polymerized either from meso-lactide or from equimolar (racemic) combinations of d-lactide and l-lactide. The poly(dl-lactide-co-glycolide) copolymers covered by this specification are also considered to be amorphous and are co-polymerized from a combination of glycolide and either meso-lactide or racemic quantities of d-lactide and l-lactide, and typically possess nominal mole fractions that equal or exceed 50 % lactide.1.2 Since poly(glycolide) is commonly abbreviated as PGA for poly(glycolic acid) and poly(lactide) is commonly abbreviated as PLA for poly(lactic acid), these polymers are commonly referred to as PGA, PLA, and PLA:PGA resins for the hydrolytic byproducts to which they respectively degrade. PLA is a term that carries no stereoisomeric specificity and therefore encompasses both the amorphous atactic/syndiotactic dl-lactide-based polymers and copolymers as well as the isotactic d-PLA and l-PLA moieties, each of which carries potential for crystallization. Therefore, specific reference to dl-PLA is essential to appropriately differentiate the amorphous atactic/syndiotactic dl-lactide-based polymers and copolymers covered by this specification. Thus, inclusion of stereoisomeric specificity within the lactic acid-based acronyms results in the following: poly(l-lactide) as PlLA for poly(l-lactic acid), poly(d-lactide) as PdLA for poly(d-lactic acid), and poly(dl-lactide) as PdlLA for poly(dl-lactic acid).1.3 This specification covers virgin amorphous poly(lactide)-based resins able to be fully solvated at 30°C by either methylene chloride (dichloromethane) or chloroform (trichloromethane). This specification is not applicable to lactide-based polymers or copolymers that possess isotactic polymeric segments sufficient in size to carry potential for lactide-based crystallization, which are covered by Specification F1925 and typically possess nominal mole fractions that equal or exceed 50 % l-lactide. This specification is not applicable to lactide-co-glycolide copolymers that possess glycolide segments sufficient in size to deliver potential for glycolide-based crystallization, thereby requiring fluorinated solvents for complete dissolution under room temperature conditions. This specification is specifically not applicable to lactide-co-glycolide copolymers with glycolide mole fractions greater than or equal to 70 % (65.3 % in mass fraction), which are covered by Specification F2313. This specification is not applicable to block copolymers or to polymers or copolymers synthesized from combinations of d-lactide and l-lactide that differ by more than 1.5 total mole percent (1.5 % of total moles).1.4 This specification addresses material characteristics of both poly(dl-lactide) and poly(dl-lactide-co-glycolide) resins intended for use in surgical implants and does not apply to packaged and sterilized finished implants fabricated from these materials.1.5 As with any material, some characteristics may be altered by processing techniques (such as molding, extrusion, machining, assembly, sterilization, and so forth) required for the production of a specific part or device. Therefore, properties of fabricated forms of this resin should be evaluated independently using appropriate test methods to assure safety and efficacy.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2579-18
标准名称:
Standard Specification for Amorphous Poly(lactide) and Poly(lactide-co-glycolide) Resins for Surgical Implants
英文名称:
Standard Specification for Amorphous Poly(lactide) and Poly(lactide-co-glycolide) Resins for Surgical Implants标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F1252-21 Standard Test Method for Measuring Optical Reflectivity of Transparent Materials
- ASTM F1256-22 Standard Guide for Selection and Practice of Emergency Medical Services Instructor for Emergency Medical Technician (EMT) Training Programs
- ASTM F1264-16e1 Standard Specification and Test Methods for Intramedullary Fixation Devices
- ASTM F1268-90(2020) Standard Guide for Establishing and Operating a Public Information, Education, and Relations Program for Emergency Medical Service Systems
- ASTM F1275-14(2020) Standard Test Method for Performance of Griddles
- ASTM F1276-23 Standard Test Method for Creep Relaxation of Laminated Composite Gasket Materials
- ASTM F1278-96(2021)e1 Standard Guide for Use and Handling of Flexible Retort Food Pouches in the Processing Environment
- ASTM F1279-19 Standard Guide for Ecological Considerations for the Restriction of the Use of Surface Washing Agents: Permeable Land Surfaces
- ASTM F1280-19 Standard Guide for Ecological Considerations for the Use of Surface Washing Agents: Impermeable Surfaces
- ASTM F1284-24 Standard Test Method for Evaluating Carpet Embedded Dirt Removal Effectiveness of Residential Central Vacuum Cleaning Systems
- ASTM F1292-22 Standard Specification for Impact Attenuation of Surfacing Materials Within the Use Zone of Playground Equipment
- ASTM F1301-18(2024)e1 Standard Practice for Labeling Chemical Protective Clothing
- ASTM F1303-04(2021) Standard Specification for Sheet Vinyl Floor Covering with Backing
- ASTM F1306-21 Standard Test Method for Slow Rate Penetration Resistance of Flexible Barrier Films and Laminates
- ASTM F1308-98(2023) Standard Test Method for Quantitating Volatile Extractables in Microwave Susceptors Used for Food Products