
【国外标准】 Standard Guide for Assessing the Attachment of Cells to Biomaterial Surfaces by Physical Methods
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 Cell attachment or, lack of it, to biomaterials is a critical factor affecting the performance of a device or implant. Cell attachment is a complicated, time-dependent, process involving significant morphological changes of the cell and deposition of a bed of extracellular matrix. Details of the adhesive bond that is formed have been reviewed by, for example, Pierres et al (2002) (4), Lukas and Dvorak (2004) (5), and Garcia and Gallant (2003) (6). The strength of this coupling can be determined either by monitoring the force of attachment between a cell and a substrate over time or by measuring the force required to detach the cell once it has adhered.4.2 Cell adhesion to a surface depends on a range of biological and physical factors that include the culture history, the age of the cell, the cell type, and both the chemistry and morphology of the underlying surface and time. These elements need to be considered in developing a test protocol.4.3 Devising robust methods for measuring the propensity of cells to attach to different substrates is further complicated since either cell adhesion or detachment can be assessed. These processes are not always similar or complementary.4.4 Most studies of cell attachment focus on obtaining some measure of the time-dependent force required to detach, or de-adhere, cells that have already adhered to a surface (James et al, 2005) (7). More recently investigators have begun to measure the adhesive forces that develop between cells and the underlying surface during attachment (Lukas and Dvorak, 2004) (5). From a practical point of view, it is much easier to measure the force required to detach or de-adhere cells from a surface than to measure those that develop during attachment. However, in both cases, the experimental data should be interpreted with a degree of caution that depends on the intended use of the measurements. The methods of measuring cell adhesion described herein are measures of the force required to detach an adherent cell.4.5 The purpose of this guide is to provide an overview of current generic test methods and identify the key factors that influence the assessment of cell adhesion and detachment. It is anticipated that this guide will form the basis for producing a series of standards that will describe these test methods in more detail.1.1 This guide describes protocols that can be used to measure the strength of the adhesive bond that develops between a cell and a surface as well as the force required to detach cells that have adhered to a substrate. Controlling the interactions of mammalian cells with surfaces is fundamental to the development of safe and effective medical products. This guide does not cover methods for characterizing surfaces. The information generated by these methods can be used to obtain quantitative measures of the susceptibility of surfaces to cell attachment as well as measures of the adhesion of cells to a surface. This guide also highlights the importance of cell culture history and influences of cell type.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2664-19e1
标准名称:
Standard Guide for Assessing the Attachment of Cells to Biomaterial Surfaces by Physical Methods
英文名称:
Standard Guide for Assessing the Attachment of Cells to Biomaterial Surfaces by Physical Methods标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3258-23 Standard Specification for Protectors for Rubber Insulating Gloves Meeting Specific Performance Requirements
- ASTM F3259-17 Standard Guide for Micro-computed Tomography of Tissue Engineered Scaffolds
- ASTM F3260-18 Standard Test Method for Determining the Flexural Stiffness of Medical Textiles
- ASTM F3262-17 Standard Classification System for Small Unmanned Aircraft Systems (sUASs) for Land Search and Rescue
- ASTM F3265-17(2023) Standard Test Method for Grid-Video Obstacle Measurement
- ASTM F3268-18a Standard Guide for in vitro Degradation Testing of Absorbable Metals
- ASTM F3270/F3270M-17 Standard Practice for Compression versus Load Properties of Gasket Materials
- ASTM F3273-17(2021)e1 Standard Specification for Wrought Molybdenum-47.5 Rhenium Alloy for Surgical Implants (UNS R03700)
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices