
【国外标准】 Standard Test Method for Determining Anaerobic Biodegradability of Radiolabeled Plastic Materials in a Laboratory-Scale Simulated Landfill Environment (Withdrawn 2011)
本网站 发布时间:
2024-02-28
- ASTM D6776-02
- Withdrawn, Replaced
- 定价: 0元 / 折扣价: 0 元
- 在线阅读
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
This method can be used to assess the anaerobic biodegradability of polymeric components of MSW such as packaging materials and to compare their biodegradability to that of materials routinely buried in landfills such as office paper and newsprint. The procedure can be completed in 6 to 9 months. This timeframe makes it possible to consider waste management during product design. The data from this method makes it possible to characterize the behavior of consumer products at the end of their useful life when they enter the solid waste management system.Limitations—Because decomposition in this test is accelerated, the results reflect the ultimate biodegradability of a material in a landfill. The actual rate of degradability in a full-scale landfill will be affected by landfill environmental conditions as well as the physical characteristics of the material when actually buried.1.1 This test method is designed to measure the anaerobic biodegradability of a material under conditions that simulate accelerated decomposition in a municipal solid waste (MSW) landfill. The test method requires the use of a 14C-labeled material so that biodegradability can be determined by monitoring for methane (14CH4) and gaseous and aqueous carbon dioxide (14CO2(g) and 14CO2(aq)), which are the terminal endproducts of methanogenic decomposition. Methanogenic conditions typically control decomposition in landfills.Note 1—A more complete description of this decomposition is found in Reference (3).1.2 This method could be applied to landfills that contain materials other than MSW. 14C-Radiolabeled material will be added to compost such that between 25 ci and 75 μci activity per 2 litres of test refuse results.Note 2—Adding more radiolabel is desirable because, if the material biodegrades, there will be little residual radiolabel left at the end of the decomposition experiment, which is when the refuse is removed from a reactor and analyzed for residual radiolabel to perform a mass balance. In addition, if insufficient radiolabel is added, then CH4 and CO2(g) production from the added refuse will dilute the 14CH4 and 14CO2(g) from decomposition of the test material, and the labeled gases may not be detected in the reactor offgas.1.3 This measure of anaerobic biodegradability in the laboratory represents what will ultimately occur in a landfill over a long period. The test conditions specified here are designed to accelerate refuse decomposition such that the entire decomposition cycle can be completed in six months.Note 3—This cycle may require decades in a landfill depending upon the actual environmental conditions (moisture content, pH, temperature).1.4 The measured biodegradability obtained here is compared to the biodegradability of both pure and lignified cellulose, which are chemically similar to office paper and newsprint, both of which are routinely buried in landfills.Note 4—The degradability of the referenced compounds is described in References (2) and (5).At this time, there is no standard concerning the extent to which a compound must biodegrade under the test conditions described here to be considered biodegradable. Thus, this test is most appropriately used to measure biodegradability relative to pure and lignified cellulose.1.5 The safety problems associated with refuse and radioactivity are not addressed in this standard. It is the responsibility of the user of this standard to establish appropriate safety and health practices. It is also incumbent on the user to conform to all the regulatory requirements, specifically those that relate to the use of open radioactive sources.Note 5—There are no corresponding ISO standards.
标准号:
ASTM D6776-02
标准名称:
Standard Test Method for Determining Anaerobic Biodegradability of Radiolabeled Plastic Materials in a Laboratory-Scale Simulated Landfill Environment (Withdrawn 2011)
英文名称:
Standard Test Method for Determining Anaerobic Biodegradability of Radiolabeled Plastic Materials in a Laboratory-Scale Simulated Landfill Environment (Withdrawn 2011)标准状态:
Withdrawn, Replaced-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D4611-16 Standard Test Method for Specific Heat of Rock and Soil
- ASTM D4614-11(2019) Standard Specification for Ethyl Acetate (All Grades)
- ASTM D4616-23 Standard Test Method for Microscopical Analysis by Reflected Light and Determination of Mesophase in a Pitch
- ASTM D4618-92(2017) Standard Specification for Design and Fabrication of Flue Gas Desulfurization System Components for Protective Lining Application
- ASTM D4619-12(2018) Standard Practice for Inspection of Linings in Operating Flue Gas Desulfurization Systems
- ASTM D4623-16 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring Method—Three Component Borehole Deformation Gauge
- ASTM D4625-21 Standard Test Method for Middle Distillate Fuel Storage Stability at 43 °C (110 °F)
- ASTM D4626-23 Standard Practice for Calculation of Gas Chromatographic Response Factors
- ASTM D4630-19 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test
- ASTM D4631-18 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using Pressure Pulse Technique
- ASTM D4634-16(2022) Standard Classification System and Basis for Specification for Styrene-Maleic Anhydride Molding and Extrusion Materials (S/MA)
- ASTM D4636-17 Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils
- ASTM D4637/D4637M-15(2021)e1 Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane
- ASTM D4638-16(2023) Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis
- ASTM D464-15(2020) Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products