
【国外标准】 Standard Test Method for Airborne Asbestos Concentration in Ambient and Indoor Atmospheres as Determined by Transmission Electron Microscopy Direct Transfer (TEM)
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method is applicable to the measurement of airborne asbestos in a wide range of ambient air situations and for detailed evaluation of any atmosphere for asbestos structures. Most fibers in ambient atmospheres are not asbestos, and therefore, there is a requirement for fibers to be identified. Most of the airborne asbestos fibers in ambient atmospheres have diameters below the resolution limit of the light microscope. This test method is based on transmission electron microscopy, which has adequate resolution to allow detection of small thin fibers and is currently the only technique capable of unequivocal identification of the majority of individual fibers of asbestos. Asbestos is often found, not as single fibers, but as very complex, aggregated structures, which may or may not also be aggregated with other particles. The fibers found suspended in an ambient atmosphere can often be identified unequivocally if sufficient measurement effort is expended. However, if each fiber were to be identified in this way, the analysis would become prohibitively expensive. Because of instrumental deficiencies or because of the nature of the particulate matter, some fibers cannot be positively identified as asbestos even though the measurements all indicate that they could be asbestos. Therefore, subjective factors contribute to this measurement, and consequently, a very precise definition of the procedure for identification and enumeration of asbestos fibers is required. The method defined in this test method is designed to provide a description of the nature, numerical concentration, and sizes of asbestos-containing particles found in an air sample. The test method is necessarily complex because the structures observed are frequently very complex. The method of data recording specified in the test method is designed to allow reevaluation of the structure-counting data as new applications for measurements are developed. All of the feasible specimen preparation techniques result in some modification of the airborne particulate matter. Even the collection of particles from a three-dimensional airborne dispersion on to a two-dimensional filter surface can be considered a modification of the particulate matter, and some of the particles, in most samples, are modified by the specimen preparation procedures. However, the procedures specified in this test method are designed to minimize the disturbance of the collected particulate material.5.2 This test method applies to analysis of a single filter and describes the precision attributable to measurements for a single filter (see 13.1). Multiple air samples are usually necessary to characterize airborne asbestos concentrations across time and space. The number of samples necessary for this purpose is proportional to the variation in measurement across samples, which may be greater than the variation in a measurement for a single sample.1.1 This test method2 is an analytical procedure using transmission electron microscopy (TEM) for the determination of the concentration of asbestos structures in ambient atmospheres and includes measurement of the dimension of structures and of the asbestos fibers found in the structures from which aspect ratios are calculated.1.1.1 This test method allows determination of the type(s) of asbestos fibers present.1.1.2 This test method cannot always discriminate between individual fibers of the asbestos and non-asbestos analogues of the same amphibole mineral.1.2 This test method is suitable for determination of asbestos in both ambient (outdoor) and building atmospheres.1.2.1 This test method is defined for polycarbonate capillary-pore filters or cellulose ester (either mixed esters of cellulose or cellulose nitrate) filters through which a known volume of air has been drawn and for blank filters.1.3 The upper range of concentrations that can be determined by this test method is 7000 s/mm2. The air concentration represented by this value is a function of the volume of air sampled.1.3.1 There is no lower limit to the dimensions of asbestos fibers that can be detected. In practice, microscopists vary in their ability to detect very small asbestos fibers. Therefore, a minimum length of 0.5 μm has been defined as the shortest fiber to be incorporated in the reported results.1.4 The direct analytical method cannot be used if the general particulate matter loading of the sample collection filter as analyzed exceeds approximately 10 % coverage of the collection filter by particulate matter.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D6281-23
标准名称:
Standard Test Method for Airborne Asbestos Concentration in Ambient and Indoor Atmospheres as Determined by Transmission Electron Microscopy Direct Transfer (TEM)
英文名称:
Standard Test Method for Airborne Asbestos Concentration in Ambient and Indoor Atmospheres as Determined by Transmission Electron Microscopy Direct Transfer (TEM)标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D4619-12(2018) Standard Practice for Inspection of Linings in Operating Flue Gas Desulfurization Systems
- ASTM D4623-16 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring Method—Three Component Borehole Deformation Gauge
- ASTM D4625-21 Standard Test Method for Middle Distillate Fuel Storage Stability at 43 °C (110 °F)
- ASTM D4626-23 Standard Practice for Calculation of Gas Chromatographic Response Factors
- ASTM D4630-19 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test
- ASTM D4631-18 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using Pressure Pulse Technique
- ASTM D4634-16(2022) Standard Classification System and Basis for Specification for Styrene-Maleic Anhydride Molding and Extrusion Materials (S/MA)
- ASTM D4636-17 Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils
- ASTM D4637/D4637M-15(2021)e1 Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane
- ASTM D4638-16(2023) Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis
- ASTM D464-15(2020) Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4647/D4647M-13(2020) Standard Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test
- ASTM D465-15(2020) Standard Test Methods for Acid Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4651-14(2020) Standard Specification for Isobutane Thermophysical Property Tables
- ASTM D4653-87(2020) Standard Test Method for Total Chlorides in Leather