
【国外标准】 Standard Test Method for Assessing the Current-Voltage Cycling Stability at Room Temperature of Absorptive Electrochromic Coatings on Sealed Insulating Glass Units (Withdrawn 2015)
本网站 发布时间:
2024-02-28
- ASTM E2241-06
- Withdrawn, No replacement
- 定价: 0元 / 折扣价: 0 元
- 在线阅读
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
This test method is intended to provide a means for evaluating the current-voltage cycling stability at ca. 22°C of ECWs as described in 1.2.2 ,4 (See Appendix X1, sections X1.4-X1.7.)1.1 The test described is a method for the accelerated aging and monitoring of the time-dependent performance of electrochromic windows (ECW). Cross sections of typical electrochromic windows have three to five-layers of coatings that include one to three active layers sandwiched between two transparent conducting electrodes (TCEs, see Section ). Examples of the cross-sectional arrangements can be found in "Evaluation Criteria and Test Methods for Electrochromic Windows." (For acronyms used in this standard, see , section ).1.2 The test method is applicable only for layered (one or more active coatings between the TCEs) absorptive electrochromic coatings on sealed insulating glass (IG) units fabricated for vision glass (superstrate and substrate) areas for use in buildings, such as glass doors, windows, skylights, and exterior wall systems. The layers used for electrochromically changing the optical properties may be inorganic or organic materials between the superstrate and substrate.1.3 The electrochromic coatings used in this test method will be subsequently exposed (see Test Methods E 2141) to solar radiation and deployed to control the amount of radiation by absorption and reflection and thus, limit the solar heat gain and amount of solar radiation that is transmitted into the building.1.4 The test method is not applicable to other chromogenic devices, for example, photochromic and thermochromic devices.1.5 The test method is not applicable to electrochromic windows that are constructed from superstrate or substrate materials other than glass.1.6 The test method referenced herein is a laboratory test conducted under specified conditions. This test is intended to simulate and, possibly, to also accelerate actual in-service use of the electrochromic windows. Results from this test cannot be used to predict the performance with time of in-service units unless actual corresponding in-service tests have been conducted and appropriate analyses have been conducted to show how performance can be predicted from the accelerated aging tests.1.7 The values stated in metric (SI) units are to be regarded as the standard.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
标准号:
ASTM E2241-06
标准名称:
Standard Test Method for Assessing the Current-Voltage Cycling Stability at Room Temperature of Absorptive Electrochromic Coatings on Sealed Insulating Glass Units (Withdrawn 2015)
英文名称:
Standard Test Method for Assessing the Current-Voltage Cycling Stability at Room Temperature of Absorptive Electrochromic Coatings on Sealed Insulating Glass Units (Withdrawn 2015)标准状态:
Withdrawn, No replacement-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM E2240-06 Standard Test Method for Assessing the Current-Voltage Cycling Stability at 90°C (194°F) of Absorptive Electrochromic Coatings on Sealed Insulating Glass Units (Withdrawn 2015)
- 下一篇: ASTM E2242-21 Standard Test Method for Column Percolation Extraction of Mine Rock by the Meteoric Water Mobility Procedure
- 推荐标准
- ASTM D8137-18(2023) Practice for Accelerated Aging of Leather
- ASTM D8138-23 Standard Specification for Preformed Silicone Joint Sealing System for Bridges
- ASTM D8139-23 Standard Specification for Semi-Rigid, Closed-Cell Polypropylene Foam, Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction
- ASTM D814-95(2020) Standard Test Method for Rubber Property—Vapor Transmission of Volatile Liquids
- ASTM D8140-18(2023) Standard Guide for the Use of Foundry Sand in Asphalt Mixtures
- ASTM D8141-22 Standard Guide for Selecting Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) Emission Testing Methods to Determine Emission Parameters for Modeling of Indoor Environments
- ASTM D8144-22 Standard Test Method for Separation and Determination of Aromatics, Nonaromatics, and FAME Fractions in Middle Distillates by Solid-Phase Extraction and Gas Chromatography
- ASTM D8148-22 Standard Test Method for Spectroscopic Determination of Haze in Fuels
- ASTM D8149-20 Standard Practice for Optimization, Calibration, and Validation of Ion Chromatographic Determination of Heteroatoms and Anions in Petroleum Products and Lubricants
- ASTM D8150-22 Standard Test Method for Determination of Organic Chloride Content in Crude Oil by Distillation Followed by Detection Using Combustion Ion Chromatography
- ASTM D8152-18 Standard Practice for Measuring Field Infiltration Rate and Calculating Field Hydraulic Conductivity Using the Modified Philip Dunne Infiltrometer Test
- ASTM D8154-24 Standard Test Methods for 1H-NMR Determination of Ketone-Ethylene-Ester and Polyvinyl Chloride Contents in KEE-PVC Roofing Fabrics
- ASTM D8155-17(2023) Standard Practice for Shake Extraction of Solid Mining and Metallurgical Processing Waste with Water
- ASTM D816-06(2023) Standard Test Methods for Rubber Cements
- ASTM D8160-20 Standard Test Method for Un-notched Cantilever Beam Impact Resistance (Izod Impact) Testing of Thermoplastic Pavement Marking Materials