
【国外标准】 Standard Specification for Autocatalytic (Electroless) Nickel-Phosphorus Coatings on Metal
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
This specification establishes the requirements for autocatalytic (electroless) nickel-phosphorus coatings applied from acidic aqueous solutions to metallic products for use in engineering functions operating at elevated temperatures. The coatings covered here are alloys of nickel and phosphorus produced by self-sustaining autocatalytic chemical reduction with hypophosphite. The coatings are grouped into the following classification systems: types, which are based on the general composition with respect to phosphorus; service condition numbers, which are based on the severity of exposure to which the coating is intended to perform and the corresponding minimum thickness that will provide satisfactory performance; and post heat treatment class, which are based on post-plating heat treatment temperature and time to produce the desired adhesion and hardness improvements. Prior to plating, substrates should be pretreated by stress relief for reducing risks of hydrogen embrittlement, peening, and racking. The coatings shall be sampled and tested accordingly to evaluate both acceptance (appearance, thickness, adhesion, and porosity) and qualification requirements (composition, microhardness, and hydrogen embrittlement). Thickness shall be assessed either by microscopical method, a magnetic induction instrument, beta backscatter method, a micrometer, weigh-plate-weigh method, coulometric method, or X-ray spectrometry. Adhesion shall be examined either by bend, impact, or thermal shock tests. And porosity shall be inspected either by ferroxyl test, boiling water test, aerated water test, or alizarin test.1.1 This specification covers requirements for autocatalytic (electroless) nickel-phosphorus coatings applied from aqueous solutions to metallic products for engineering (functional) uses.1.2 The coatings are alloys of nickel and phosphorus produced by autocatalytic chemical reduction with hypophosphite. Because the deposited nickel alloy is a catalyst for the reaction, the process is self-sustaining. The chemical and physical properties of the deposit vary primarily with its phosphorus content and subsequent heat treatment. The chemical makeup of the plating solution and the use of the solution can affect the porosity and corrosion resistance of the deposit. For more details, see ASTM STP 265 (1)2 and Refs (2), (3), (4), and (5).1.3 The coatings are generally deposited from acidic solutions operating at elevated temperatures.1.4 The process produces coatings of uniform thickness on irregularly shaped parts, provided the plating solution circulates freely over their surfaces.1.5 The coatings have multifunctional properties, such as hardness, heat hardenability, abrasion, wear and corrosion resistance, magnetics, electrical conductivity provide diffusion barrier, and solderability. They are also used for the salvage of worn or mismachined parts.1.6 The low phosphorus (2 to 4 % P) coatings are microcrystalline and possess high as-plated hardness (620 to 750 HK 100). These coatings are used in applications requiring abrasion and wear resistance.1.7 Lower phosphorus deposits in the range between 1 % and 3 % phosphorus are also microcrystalline. These coatings are used in electronic applications providing solderability, bondability, increased electrical conductivity, and resistance to strong alkali solutions.1.8 The medium phosphorous coatings (5 to 9 % P) are most widely used to meet the general purpose requirements of wear and corrosion resistance.1.9 The high phosphorous (more than 10 % P) coatings have superior salt-spray and acid resistance in a wide range of applications. They are used on beryllium and titanium parts for low stress properties. Coatings with phosphorus contents greater than 11.2 % P are not considered to be ferromagnetic.1.10 Units—The values stated in SI units are to be regarded as standard.1.11 The following precautionary statement pertains only to the test method portion, Section 9, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM B733-22
标准名称:
Standard Specification for Autocatalytic (Electroless) Nickel-Phosphorus Coatings on Metal
英文名称:
Standard Specification for Autocatalytic (Electroless) Nickel-Phosphorus Coatings on Metal标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E423-71(2019) Standard Test Method for Normal Spectral Emittance at Elevated Temperatures of Nonconducting Specimens
- ASTM E424-71(2023) Standard Test Methods for Solar Energy Transmittance and Reflectance (Terrestrial) of Sheet Materials
- ASTM E431-96(2022) Standard Guide to Interpretation of Radiographs of Semiconductors and Related Devices
- ASTM E433-71(2023) Standard Reference Photographs for Liquid Penetrant Inspection
- ASTM E434-10(2020) Standard Test Method for Calorimetric Determination of Hemispherical Emittance and the Ratio of Solar Absorptance to Hemispherical Emittance Using Solar Simulation
- ASTM E436-03(2021) Standard Test Method for Drop-Weight Tear Tests of Ferritic Steels
- ASTM E438-92(2024) Standard Specification for Glasses in Laboratory Apparatus
- ASTM E439-23 Standard Test Methods for Chemical Analysis of Beryllium
- ASTM E445/E445M-15(2019) Standard Test Method for Stopping Distance on Paved Surfaces Using a Passenger Vehicle Equipped with Full-Scale Tires
- ASTM E446-20 Standard Reference Radiographs for Steel Castings Up to 2 in. (50.8 mm) in Thickness
- ASTM E45-18a(2023) Standard Test Methods for Determining the Inclusion Content of Steel
- ASTM E452-02(2023) Standard Test Method for Calibration of Refractory Metal Thermocouples Using a Radiation Thermometer
- ASTM E454-12(2021) Standard Specification for Industrial Perforated Plate and Screens (Square Opening Series)
- ASTM E455-19 Standard Test Method for Static Load Testing of Framed Floor or Roof Diaphragm Constructions for Buildings
- ASTM E457-08(2020) Standard Test Method for Measuring Heat-Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter