
【国外标准】 Standard Practice for Corrosion Fatigue Testing of Metallic Implant Materials
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 Implants, particularly orthopedic devices, are usually exposed to dynamic forces. Thus, implant materials must have high fatigue resistance in the physiological environment.4.1.1 This practice provides a procedure for fatigue testing in a simulated physiological environment. Axial tension-tension fatigue tests in an environmental test chamber are recommended as a standard procedure. The axial fatigue loading shall comply with Practices E466 and E467.4.1.1.1 Bending and rotating bending beam fatigue tests or torsion tests may be performed in a similar environmental cell.4.1.2 This practice is intended to assess the fatigue and corrosion fatigue properties of materials that are employed or projected to be employed for implants. This practice is suitable for studying the effects of different material treatments and surface conditions on the fatigue behavior of implant materials. The loading mode of the actual implants may be different from that of this practice. Determining the fatigue behavior of implants and implant components may require separate tests that consider the specific design and loading mode.4.1.3 As a substitute for body fluid, 0.9 % saline solution is recommended as a standard environment. One of the various Ringer's solutions or another substitute for body fluid may also be suitable for particular tests. However, these various solutions may not give equal fatigue endurance results. The chloride ions are the most critical constituent in these solutions for initiating corrosion fatigue.4.1.4 Because implants are manufactured from highly corrosion-resistant materials, no visible corrosion may be detectable when inspected by means of optical microscopy or scanning electron microscopy. Only a decrease of fatigue strength in the high cycle range may be noticeable. Therefore, S-N curves covering a broad fatigue loading range should be generated in the test solution and in air. Comparison of fatigue curves generated in air and saline solution may be the only way to assess the effect of the saline environment.4.1.5 Where the fatigue behavior of a material system is already established, it may suffice to test modifications of the material properties or surface condition in only a selected stress range.4.1.6 The recommended loading frequency of one hertz corresponds to the frequency of weight bearing during walking. For screening tests, higher test frequencies may be used; but it must be realized that higher frequencies may affect the results.4.1.7 Summary of Standard Conditions—For inter-laboratory comparisons the following conditions are considered as the standard test. Axial tension-tension tests with cylindrical specimens in 0.9 % saline solution at 37°C and air at room temperature under a loading frequency of 1 Hz.1.1 This practice covers the procedure for performing corrosion fatigue tests to obtain S-N (3.2.1) fatigue curves or statistically derived fatigue strength values, or both, for metallic implant materials. This practice describes the testing of axially loaded fatigue specimens subjected to a constant amplitude, periodic forcing function in saline solution at 37°C and in air at room temperature. The environmental test method for implant materials may be adapted to other modes of fatigue loading such as bending or torsion. While this practice is not intended to apply to fatigue tests on implantable components or devices, it does provide guidelines for fatigue tests with standard specimens in an environment related to physiological conditions.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F1801-20
标准名称:
Standard Practice for Corrosion Fatigue Testing of Metallic Implant Materials
英文名称:
Standard Practice for Corrosion Fatigue Testing of Metallic Implant Materials标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- INCITS 20-1967[S2010] Take-Up Reels for One-Inch Perforated Tape for Information Interchange (formerly ANSI X3.20-1967 (R2000))
- INCITS/ISO/IEC 14496-20:2008AM1:2009 [R2016] Information technology -- Coding of audio-visual objects -- Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF) AMENDMENT 1: Extensions to support SVGT1.2
- INCITS/ISO/IEC 14496-5:2001/AM 20:2009 [R2016] Information technology -- Coding of audio-visual objects -- Part 5: Reference software - Amendment 20: MPEG-1 and -2 on MPEG-4 reference software
- INCITS/ISO/IEC 2382-20:1990[R2011] Information Processing Systems Vocabulary Part 20: System Development (formerly ANSI/ISO/IEC 2382-20-1990)
- ASTM D8137-18(2023) Practice for Accelerated Aging of Leather
- ASTM D8138-23 Standard Specification for Preformed Silicone Joint Sealing System for Bridges
- ASTM D8139-23 Standard Specification for Semi-Rigid, Closed-Cell Polypropylene Foam, Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction
- ASTM D814-95(2020) Standard Test Method for Rubber Property—Vapor Transmission of Volatile Liquids
- ASTM D8140-18(2023) Standard Guide for the Use of Foundry Sand in Asphalt Mixtures
- ASTM D8141-22 Standard Guide for Selecting Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) Emission Testing Methods to Determine Emission Parameters for Modeling of Indoor Environments
- ASTM D8144-22 Standard Test Method for Separation and Determination of Aromatics, Nonaromatics, and FAME Fractions in Middle Distillates by Solid-Phase Extraction and Gas Chromatography
- ASTM D8148-22 Standard Test Method for Spectroscopic Determination of Haze in Fuels
- ASTM D8149-20 Standard Practice for Optimization, Calibration, and Validation of Ion Chromatographic Determination of Heteroatoms and Anions in Petroleum Products and Lubricants
- ASTM D8150-22 Standard Test Method for Determination of Organic Chloride Content in Crude Oil by Distillation Followed by Detection Using Combustion Ion Chromatography
- ASTM D8152-18 Standard Practice for Measuring Field Infiltration Rate and Calculating Field Hydraulic Conductivity Using the Modified Philip Dunne Infiltrometer Test