
【国外标准】 Standard Practice for Evaluating Response Robot Logistics: System Configuration
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 These basic requirements for response robots that help enhance the safety and effectiveness of responders or soldiers include: the robots are designed to be remotely operated from safe standoff distances, deployable at operational tempos, capable of operating in complex environments, sufficiently hardened against harsh environments, reliable and field serviceable, durable or cost-effectively disposable, and equipped with operational safeguards.5.2 This practice aligns user expectations with actual capabilities to understand the inherent trade-offs in deployable systems at any given cost. For example, a design issue of the number of batteries to be packed on a robot could affect the desired weight, endurance, or cost. Appropriate levels of understanding can help ensure that requirement specifications are articulated within the limit of current capabilities.5.3 This practice provides a tangible representation of essential robot capabilities with quantifiable measures of performance. It facilitates communication among communities of robot users and manufacturers. As such, this practice can be used to help:5.3.1 Inspire technical innovation and guide developers toward implementing the combinations of capabilities necessary to perform essential mission tasks.5.3.2 Measure and compare essential robot capabilities. This practice can help establish the reliability of the system to perform specified tasks, highlight break-through capabilities, and encourage hardening of developmental systems.5.3.3 Inform purchasing decisions, conduct acceptance testing, and align deployment objectives with statistically significant robot capabilities data captured through repeated testing and comparison of quantitative results.5.3.4 Focus operator training and measure proficiency as a repeatable practice task that exercises actuators, sensors, and operator interfaces. The practice can help capture and compare quantitative scores even within uncontrolled environmental variables and, in turn, help develop, maintain, measure, and track very perishable skills over time and enable comparisons across squads, regions, or national averages.5.4 Although this practice is scoped for homeland security applications, it could be much more wildly applicable. However, it shall be the responsibilities of the respective practitioners to verify the extents of applicability of this practice to their domains.1.1 This practice, as a part of the response robot logistics test suite, specifies the requirements of identifying and documenting the configuration of a robot system under test as well as the associated processes for doing it. The aspects to be included in such a configuration practice are the key dimensions and weights, the existent subsystems and key components, as well as the key timing requirements for setting up and maintaining the system.1.2 This practice applies to ground, aerial, and aquatic response robot systems controlled remotely by an operator from a standoff distance appropriate for the intended missions. Such robot systems may further possess certain assistive features or autonomous behaviors.1.3 Performing Location—This practice may be performed anywhere the specific apparatuses are implemented and environmental conditions are met.1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Both units are referenced to facilitate acquisition of materials internationally and minimize fabrication costs.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E3132/E3132M-17
标准名称:
Standard Practice for Evaluating Response Robot Logistics: System Configuration
英文名称:
Standard Practice for Evaluating Response Robot Logistics: System Configuration标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 3200.2.17:1994/Amdt 1:1997 Approval and test specification - Medical electrical equipment - Particular requirements for safety - Remote-controlled automatically-driven gamma-ray afterloading equipment
- AS/NZS 3350.2.17:2000/Amdt 1:2001 Safety of household and similar electrical appliances Particular requirements - Blankets, pads and similar flexible heating
- AS/NZS 3350.2.17:2000/Amdt 3:2007 Safety of household and similar electrical appliances Particular requirements - Blankets, pads and similar flexible heating appliances (IEC 60335-2-17:1998, MOD)
- AS/NZS 4456.17:2003/Amdt 1:2004 Masonry units, segmental pavers and flags - Methods of test Determining initial rate of absorption (suction)
- AS/NZS 60079.17:2009/Amdt 1:2011 Explosive atmospheres Electrical installations inspection and maintenance
- AS/NZS 60335.2.17:2004/Amdt 2:2009 Household and similar electrical appliances - Safety Particular requirements for blankets, pads, clothing and similar flexible heating appliances (IEC 60335-2-17 Ed 2.2, MOD)
- AS/NZS 60598.2.17:2006 Luminaires Particular requirements - Luminaires for stage lighting, television, film and photographic studios (outdoor and indoor)(IEC 60598.2.17, Ed. 1.0 (1984) MOD)
- AS/NZS 60745.2.17:2003 Hand-held motor-operated electric tools - Safety - Particular requirements for routers and trimmers
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members