
【国外标准】 Standard Test Method for Volumetric and Mass Flow Rate Measurement in a Duct Using Tracer Gas Dilution
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The method presented here is a field method that may be used to determine mass and volume flow rates in ducts where flow conditions may be irregular and nonuniform. The gas flowing in the duct is considered to be an ideal gas. The method may be especially useful in those locations where conventional pitot tube or thermal anemometer velocity measurements are difficult or inappropriate due either to very low average flow velocity or the lack of a suitable run of duct upstream and downstream of the measurement location.5.2 This test method can produce the volumetric flow rate at standard conditions without the need to determine gas stream composition, temperature, and water vapor content.5.3 This test method is useful for determining mass or volumetric flow rates in HVAC ducts, fume hoods, vent stacks, and mine tunnels, as well as in performing model studies of pollution control devices.5.4 This test method is based on first principles (conservation of mass) and does not require engineering assumptions.5.5 This test method does not require the measurement of the area of the duct or stack.5.6 The test method does not require flow straightening.5.7 The test method is independent of flow conditions, such as angle, swirl, turbulence, reversals, and hence, does not require flow straightening.5.8 The dry volumetric airflow can be determined by drying the air samples without measuring the water vapor concentration.1.1 This test method describes the measurement of the volumetric and mass flow rate of a gas stream within a duct, stack, pipe, mine tunnel, or flue using a tracer gas dilution technique. For editorial convenience all references in the text will be to a duct, but it should be understood that this could refer equally well to a stack, pipe, mine tunnel, or flue. This test method is limited to those applications where the gas stream and the tracer gas can be treated as ideal gases at the conditions of the measurement. In this test method, the gas stream will be referred as air, though it could be any another gas that exhibits ideal gas law behavior.1.2 This test method is not restricted to any particular tracer gas although experimental experience has shown that certain gases are used more readily than others as suitable tracer gases. It is preferable that the tracer gas not be a natural component of the gas stream.1.3 Use of this test method requires a knowledge of the principles of gas analysis and instrumentation. Correct use of the formulas presented here requires consistent use of units.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and to determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E2029-11(2019)
标准名称:
Standard Test Method for Volumetric and Mass Flow Rate Measurement in a Duct Using Tracer Gas Dilution
英文名称:
Standard Test Method for Volumetric and Mass Flow Rate Measurement in a Duct Using Tracer Gas Dilution标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3258-23 Standard Specification for Protectors for Rubber Insulating Gloves Meeting Specific Performance Requirements
- ASTM F3259-17 Standard Guide for Micro-computed Tomography of Tissue Engineered Scaffolds
- ASTM F3260-18 Standard Test Method for Determining the Flexural Stiffness of Medical Textiles
- ASTM F3262-17 Standard Classification System for Small Unmanned Aircraft Systems (sUASs) for Land Search and Rescue
- ASTM F3265-17(2023) Standard Test Method for Grid-Video Obstacle Measurement
- ASTM F3268-18a Standard Guide for in vitro Degradation Testing of Absorbable Metals
- ASTM F3270/F3270M-17 Standard Practice for Compression versus Load Properties of Gasket Materials
- ASTM F3273-17(2021)e1 Standard Specification for Wrought Molybdenum-47.5 Rhenium Alloy for Surgical Implants (UNS R03700)
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices