
【国外标准】 Standard Guide for Minimizing Unwanted Electron Beam Effects in Auger Electron Spectroscopy
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 When electron beam excitation is used in AES, the incident electron beam can interact with the specimen material causing physical and chemical changes. In general, these effects are a hindrance to AES analysis because they cause localized specimen modification (1-4).54.2 With specimens that have poor electrical conductivity the electron beam can stimulate the development of localized charge on the specimen surface. This effect is a hindrance to AES analysis because the potentials associated with the charge can either adversely affect the integrity of Auger data or make Auger data collection difficult (5, 6).1.1 This guide outlines the origins and manifestations of unwanted electron beam effects in Auger electron spectroscopy (AES).1.2 Some general guidelines are provided concerning the electron beam parameters which are most likely to produce these effects and suggestions are offered on how to minimize them.1.3 General classes of materials are identified which are most likely to exhibit unwanted electron beam effects. In addition, a tabulation of some specific materials which have been observed to undergo electron damage effects is provided.1.4 A simple method is outlined for establishing the existence and extent of these effects during routine AES analysis.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E983-19
标准名称:
Standard Guide for Minimizing Unwanted Electron Beam Effects in Auger Electron Spectroscopy
英文名称:
Standard Guide for Minimizing Unwanted Electron Beam Effects in Auger Electron Spectroscopy标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E423-71(2019) Standard Test Method for Normal Spectral Emittance at Elevated Temperatures of Nonconducting Specimens
- ASTM E424-71(2023) Standard Test Methods for Solar Energy Transmittance and Reflectance (Terrestrial) of Sheet Materials
- ASTM E431-96(2022) Standard Guide to Interpretation of Radiographs of Semiconductors and Related Devices
- ASTM E433-71(2023) Standard Reference Photographs for Liquid Penetrant Inspection
- ASTM E434-10(2020) Standard Test Method for Calorimetric Determination of Hemispherical Emittance and the Ratio of Solar Absorptance to Hemispherical Emittance Using Solar Simulation
- ASTM E436-03(2021) Standard Test Method for Drop-Weight Tear Tests of Ferritic Steels
- ASTM E438-92(2024) Standard Specification for Glasses in Laboratory Apparatus
- ASTM E439-23 Standard Test Methods for Chemical Analysis of Beryllium
- ASTM E445/E445M-15(2019) Standard Test Method for Stopping Distance on Paved Surfaces Using a Passenger Vehicle Equipped with Full-Scale Tires
- ASTM E446-20 Standard Reference Radiographs for Steel Castings Up to 2 in. (50.8 mm) in Thickness
- ASTM E45-18a(2023) Standard Test Methods for Determining the Inclusion Content of Steel
- ASTM E452-02(2023) Standard Test Method for Calibration of Refractory Metal Thermocouples Using a Radiation Thermometer
- ASTM E454-12(2021) Standard Specification for Industrial Perforated Plate and Screens (Square Opening Series)
- ASTM E455-19 Standard Test Method for Static Load Testing of Framed Floor or Roof Diaphragm Constructions for Buildings
- ASTM E457-08(2020) Standard Test Method for Measuring Heat-Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter