
【国外标准】 Standard Practice for Cleaning of Vitrified Clay Sanitary Sewer Pipelines
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 Hydraulic cleaning methods include equipment that uses water and water velocity to clean the invert and walls of the vitrified clay sewer pipe.4.2 The practice of high-velocity sewer cleaning is best described as a hydraulic cleaning method that uses water pressure to remove obstructions and deposits in sewers or storm drains.4.3 There are different configurations of high-velocity sewer cleaning machines. These units have the capability of generating variable water pressures up to 3500 psi (24 MPa) and variable flow rates of 50-125 gal per min (gpm) (180-473 L per min).4.4 The water tank capacity on these units varies from 1000-1500 gal (3785-5678 L).4.5 The hose lengths vary between 500 and 1000 ft (152 and 305 m) in length with a diameter of 3/4- 11/4 in. NPT.4.6 There are number of different nozzles and tools that may be used during the cleaning process.4.7 Some high-velocity sewer cleaners have a vacuum conveyance system that use large fans or positive displacement vacuum pumps for material removal capabilities. With this type of system, material can be vacuumed from the manhole into a debris tank as it is brought back with the jet or tool and taken to a disposal area. These systems can be either trailer or truck mounted and are generally known as combination machines.4.8 The Occupational Safety and Health Administration (OSHA) has set guidelines for the safe removal of hazardous and nonhazardous substances as stated in OSHA Section 5 of Public Law 91-596; OSHA 29 USC 654; 29 CFR 1910.120; as well as DOT CFR Parts 106-7, 171-180, and 390-397.1.1 This practice covers the personnel requirements, operator training, operating procedures, and recommended equipment performance/design for the proper operation of pressure water-jet cleaning and cutting equipment as normally used by municipalities and contractors tasked with operations, maintenance, cleaning, and pre-rehabilitation cleaning work of vitrified clay mainline sewer pipe.1.2 The term “high-pressure water jetting” covers all water jetting, including the use of jets and hydromechanical tooling at pressures above 2000 psig (0.69 MPa).1.3 This practice covers the “high-pressure water jetting” of vitrified clay pipe and should not be applied to other pipe and pipe lining materials without evaluating the recommended cleaning procedure from the manufacturer to avoid damage.1.4 Units—The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C1920-23
标准名称:
Standard Practice for Cleaning of Vitrified Clay Sanitary Sewer Pipelines
英文名称:
Standard Practice for Cleaning of Vitrified Clay Sanitary Sewer Pipelines标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 1462.23:1997 Methods of test for plastics pipes and fittings Method for determination of ring flexibility
- AS/NZS 3350.2.23:2001/Amdt 2:2004 Safety of household and similar electrical appliances - Particular requirements for appliances for skin and hair care
- AS/NZS 3350.2.23:2001/Amdt 4:2008 Safety of household and similar electrical appliances Particular requirements for skin or hair care
- AS/NZS 4266.23:1996 Reconstituted wood-based panels - Methods of test Determination of resistance to steam
- AS/NZS 61558.2.23:2001 Safety of power transformers, power supply units and similar devices - Particular requirements for transformers for construction sites (IEC 61558-2-23:2000, MOD)
- AS/NZS 61558.2.23:2011 (IEC TEXT)/Amdt 1:2012 Safety of Power Transformers, Power Supplies, Reactors and combinations thereof Particular requirements and tests for transformers and power supply units for construction sites
- AS/NZS 61558.2.23:2011/Amdt 1:2012 Safety of Power Transformers, Power Supplies, Reactors and combinations thereof Particular requirements and tests for transformers and power supply units for construction sites
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications