
【国外标准】 Standard Test Method for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
2.1 Significance—Retained austenite with a near random crystallographic orientation is found in the microstructure of heat-treated low-alloy, high-strength steels that have medium (0.40 weight %) or higher carbon contents. Although the presence of retained austenite may not be evident in the microstructure, and may not affect the bulk mechanical properties such as hardness of the steel, the transformation of retained austenite to martensite during service can affect the performance of the steel.2.2 Use—The measurement of retained austenite can be included in low-alloy steel development programs to determine its effect on mechanical properties. Retained austenite can be measured on a companion specimen or test section that is included in a heat-treated lot of steel as part of a quality control practice. The measurement of retained austenite in steels from service can be included in studies of material performance.1.1 This test method covers the determination of retained austenite phase in steel using integrated intensities (area under peak above background) of X-ray diffraction peaks using chromium Kα or molybdenum Kα X-radiation.1.2 The method applies to carbon and alloy steels with near random crystallographic orientations of both ferrite and austenite phases.1.3 This test method is valid for retained austenite contents from 1 % by volume and above.1.4 If possible, X-ray diffraction peak interference from other crystalline phases such as carbides should be eliminated from the ferrite and austenite peak intensities.1.5 Substantial alloy contents in steel cause some change in peak intensities which have not been considered in this method. Application of this method to steels with total alloy contents exceeding 15 weight % should be done with care. If necessary, the users can calculate the theoretical correction factors to account for changes in volume of the unit cells for austenite and ferrite resulting from variations in chemical composition.1.6 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E975-22
标准名称:
Standard Test Method for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation
英文名称:
Standard Test Method for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E423-71(2019) Standard Test Method for Normal Spectral Emittance at Elevated Temperatures of Nonconducting Specimens
- ASTM E424-71(2023) Standard Test Methods for Solar Energy Transmittance and Reflectance (Terrestrial) of Sheet Materials
- ASTM E431-96(2022) Standard Guide to Interpretation of Radiographs of Semiconductors and Related Devices
- ASTM E433-71(2023) Standard Reference Photographs for Liquid Penetrant Inspection
- ASTM E434-10(2020) Standard Test Method for Calorimetric Determination of Hemispherical Emittance and the Ratio of Solar Absorptance to Hemispherical Emittance Using Solar Simulation
- ASTM E436-03(2021) Standard Test Method for Drop-Weight Tear Tests of Ferritic Steels
- ASTM E438-92(2024) Standard Specification for Glasses in Laboratory Apparatus
- ASTM E439-23 Standard Test Methods for Chemical Analysis of Beryllium
- ASTM E445/E445M-15(2019) Standard Test Method for Stopping Distance on Paved Surfaces Using a Passenger Vehicle Equipped with Full-Scale Tires
- ASTM E446-20 Standard Reference Radiographs for Steel Castings Up to 2 in. (50.8 mm) in Thickness
- ASTM E45-18a(2023) Standard Test Methods for Determining the Inclusion Content of Steel
- ASTM E452-02(2023) Standard Test Method for Calibration of Refractory Metal Thermocouples Using a Radiation Thermometer
- ASTM E454-12(2021) Standard Specification for Industrial Perforated Plate and Screens (Square Opening Series)
- ASTM E455-19 Standard Test Method for Static Load Testing of Framed Floor or Roof Diaphragm Constructions for Buildings
- ASTM E457-08(2020) Standard Test Method for Measuring Heat-Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter