
【国外标准】 Standard Test Method for Unsteady-State Heat Transfer Evaluation of Flame-Resistant Materials for Clothing with Burn Injury Prediction
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method is intended for the determination of a thermal performance estimate value of a material, a combination of materials, or a comparison of different materials used in flame-resistant clothing for workers exposed to combined convective and radiant thermal hazards.5.2 This test method evaluates a material’s heat transfer properties when exposed to a heat exposure at a constant value and specific duration. Air movement at the face of the specimen and around the calorimeter can affect the measured heat transferred due to forced convective heat losses. Minimizing air movement around the specimen and test apparatus will aid in the repeatability of the results.5.3 This test method accounts for the thermal energy stored in the exposed test specimen after the heat exposure has ceased. Higher values of thermal performance estimate ratings determined in this test associate to higher values of thermal (convective and radiative) energy protection against a predicted skin burn injury.5.4 This test method maintains the specimen in a static, horizontal position and does not involve movement except that resulting from the exposure.5.5 This test method specifies a standardized 84 ± 2 kW/m2 (2 ± 0.05 cal/cm2·s) exposure condition. Different exposure conditions have the potential to produce different results. Other exposure conditions representative of the expected hazard are allowed but shall be reported with the results along with a determination of the exposure energy level stability.5.6 This test method contains optional provisions for conducting certification testing against a prescribed thermal performance estimate value.1.1 This test method measures the non-steady state heat transfer through flame-resistant materials for clothing subjected to a combined convective and radiant heat exposure.1.1.1 This test method is not applicable to materials that are not flame resistant.NOTE 1: The determination of a material’s flame resistance shall be made prior to testing and done in accordance with the applicable performance or specification standard, or both, for the material’s end use.1.1.2 This test method accounts for the thermal energy contained in an exposed test specimen after the standardized combined convective and radiant heat exposure has ceased and is used to estimate performance to a predicted second-degree skin burn injury.1.2 This test method is used to measure and describe the response of materials, products, or assemblies to heat under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound or other units that are commonly used for thermal testing.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2703-21
标准名称:
Standard Test Method for Unsteady-State Heat Transfer Evaluation of Flame-Resistant Materials for Clothing with Burn Injury Prediction
英文名称:
Standard Test Method for Unsteady-State Heat Transfer Evaluation of Flame-Resistant Materials for Clothing with Burn Injury Prediction标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- INCITS/ISO/IEC 14496-5:2001/AM 21:2009 [R2016] Information technology -- Coding of audio-visual objects -- Part 5: Reference software - Amendment 21: Frame-based Animated Mesh Compression reference software
- INCITS/ISO/IEC 21000-21:2017 (2021) Information technology - Multimedia framework (MPEG-21) - Part 21: Media contract ontology
- INCITS/ISO/IEC 23000-21:2019 (2021) Information technology - Multimedia application format (MPEG-A) - Part 21: Visual identity management application format
- ASTM D8137-18(2023) Practice for Accelerated Aging of Leather
- ASTM D8138-23 Standard Specification for Preformed Silicone Joint Sealing System for Bridges
- ASTM D8139-23 Standard Specification for Semi-Rigid, Closed-Cell Polypropylene Foam, Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction
- ASTM D814-95(2020) Standard Test Method for Rubber Property—Vapor Transmission of Volatile Liquids
- ASTM D8140-18(2023) Standard Guide for the Use of Foundry Sand in Asphalt Mixtures
- ASTM D8141-22 Standard Guide for Selecting Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) Emission Testing Methods to Determine Emission Parameters for Modeling of Indoor Environments
- ASTM D8144-22 Standard Test Method for Separation and Determination of Aromatics, Nonaromatics, and FAME Fractions in Middle Distillates by Solid-Phase Extraction and Gas Chromatography
- ASTM D8148-22 Standard Test Method for Spectroscopic Determination of Haze in Fuels
- ASTM D8149-20 Standard Practice for Optimization, Calibration, and Validation of Ion Chromatographic Determination of Heteroatoms and Anions in Petroleum Products and Lubricants
- ASTM D8150-22 Standard Test Method for Determination of Organic Chloride Content in Crude Oil by Distillation Followed by Detection Using Combustion Ion Chromatography
- ASTM D8152-18 Standard Practice for Measuring Field Infiltration Rate and Calculating Field Hydraulic Conductivity Using the Modified Philip Dunne Infiltrometer Test
- ASTM D8154-24 Standard Test Methods for 1H-NMR Determination of Ketone-Ethylene-Ester and Polyvinyl Chloride Contents in KEE-PVC Roofing Fabrics