
【国外标准】 Standard Guide for Development of Laser Diffraction Particle Size Analysis Methods for Powder Materials
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The technique of laser diffraction for particle size distribution analysis is extensively used in industry and academia both for on-line control and laboratory needs. Guidance is obviously useful in this regard.5.2 This guide can be used to develop methods of particle size analysis where well-established analysis procedures do not already exist. See Guide B821 for similar guidance and useful procedures for wet dispersion of metal powders and related compounds.1.1 This guide sets out the general approach to the particle size distribution measurement of powders, suspensions, or slurries using an appropriate wet or dry methodology by the laser diffraction technique. It is recommended for use in measurements of broad particle size distributions.1.2 The guide provides guidelines to the parameters that should be specified and a generalized guideline to reasonable and acceptable tolerances for points in the volume-based distribution curve such as x10 (Dv10), x50 (Dv50), x90 (Dv90), and D[4, 3] (volume moment mean). It is noted that ISO prefers the term x for particle size as opposed to other usage of d or D (implying diameter).1.3 This guide provides guidance on the verification of instrument performance in conjunction with the internal quality control (QC) audit functions of the instrument owner. Results should be reported in the format indicated by Practice E1617 and ISO 13320.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E3340-22
标准名称:
Standard Guide for Development of Laser Diffraction Particle Size Analysis Methods for Powder Materials
英文名称:
Standard Guide for Development of Laser Diffraction Particle Size Analysis Methods for Powder Materials标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM B1-13(2018) Standard Specification for Hard-Drawn Copper Wire
- ASTM B100-20 Standard Specification for Wrought Copper-Alloy Bearing and Expansion Plates and Sheets for Bridge and Other Structural Use
- ASTM B1002-16(2020) Standard Specification for Refined Indium
- ASTM B1003-16(2023) Standard Specification for Seamless Copper Tube for Linesets
- ASTM B1004-16(2022) Standard Practice for Contact Performance Classification of Electrical Connection Systems
- ASTM B1005-17(2023) Standard Specification for Copper-Clad Aluminum Bar for Electrical Purposes (Bus Bar)
- ASTM B1008-18 Standard Test Method for Stress-Strain Testing for Overhead Electrical Conductors
- ASTM B1010/B1010M-19 Standard Specification for Copper-Clad Steel Electrical Conductor for Tracer Wire Applications
- ASTM B1011/B1011M-22 Standard Specification for Cobalt Alloy Spring Wire
- ASTM B1013-22 Standard Specification for High Fluidity (HF) Zinc-Aluminum Alloy Thin Wall Die Castings
- ASTM B1014-20 Standard Specification for Welded Copper and Copper Alloy Condenser and Heat Exchanger Tubes with a Textured Surface(s)
- ASTM B1019-21 Standard Test Method for Determination of Surface Oxides on Copper Rod(for Electrical Purposes)
- ASTM B1020/B1020M-22 Standard Specification for Seamless Nickel Alloy Mechanical Tubing and Hollow Bar
- ASTM B1021-21 Standard Test Method for Peel Resistance of Metal Sheets Joined by High Strength Bonds
- ASTM B1022-22 Standard Specification for Zinc-Aluminum-Magnesium Alloys in Ingot Form for Coating Steel Sheet by the Hot-Dip Process