
【国外标准】 Standard Practice for Open-Graded Friction Course (OGFC) Asphalt Mixture Design
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The procedure described in this practice is used to design OGFC asphalt mixtures that will provide good performance in terms of permeability (tending to reduce hydroplaning and potential for skidding) and durability when subjected to high volumes of traffic.1.1 This practice covers the mix design of open-graded friction course (OGFC) using the Superpave Gyratory Compactor (SGC) or other suitable forms of compaction. The OGFC asphalt mixture design is based on the volumetric properties of the asphalt mixture in terms of air voids and the presence of stone-on-stone contact. Information found in Guide D6932/D6932M should be reviewed before starting the mix design. Where applicable, Specification D3666 should be applied as a minimum for agencies testing and inspecting road and paving materials.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7064/D7064M-21
标准名称:
Standard Practice for Open-Graded Friction Course (OGFC) Asphalt Mixture Design
英文名称:
Standard Practice for Open-Graded Friction Course (OGFC) Asphalt Mixture Design标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D7063/D7063M-18 Standard Test Method for Effective Porosity and Effective Air Voids of Compacted Asphalt Mixture Samples
- 下一篇: ASTM D7065-17 Standard Test Method for Determination of Nonylphenol, Bisphenol A, p-tert-Octylphenol, Nonylphenol Monoethoxylate and Nonylphenol Diethoxylate in Environmental Waters by Gas Chromatography Mass Spectrometry
- 推荐标准
- ASTM B1-13(2018) Standard Specification for Hard-Drawn Copper Wire
- ASTM B100-20 Standard Specification for Wrought Copper-Alloy Bearing and Expansion Plates and Sheets for Bridge and Other Structural Use
- ASTM B1002-16(2020) Standard Specification for Refined Indium
- ASTM B1003-16(2023) Standard Specification for Seamless Copper Tube for Linesets
- ASTM B1004-16(2022) Standard Practice for Contact Performance Classification of Electrical Connection Systems
- ASTM B1005-17(2023) Standard Specification for Copper-Clad Aluminum Bar for Electrical Purposes (Bus Bar)
- ASTM B1008-18 Standard Test Method for Stress-Strain Testing for Overhead Electrical Conductors
- ASTM B1010/B1010M-19 Standard Specification for Copper-Clad Steel Electrical Conductor for Tracer Wire Applications
- ASTM B1011/B1011M-22 Standard Specification for Cobalt Alloy Spring Wire
- ASTM B1013-22 Standard Specification for High Fluidity (HF) Zinc-Aluminum Alloy Thin Wall Die Castings
- ASTM B1014-20 Standard Specification for Welded Copper and Copper Alloy Condenser and Heat Exchanger Tubes with a Textured Surface(s)
- ASTM B1019-21 Standard Test Method for Determination of Surface Oxides on Copper Rod(for Electrical Purposes)
- ASTM B1020/B1020M-22 Standard Specification for Seamless Nickel Alloy Mechanical Tubing and Hollow Bar
- ASTM B1021-21 Standard Test Method for Peel Resistance of Metal Sheets Joined by High Strength Bonds
- ASTM B1022-22 Standard Specification for Zinc-Aluminum-Magnesium Alloys in Ingot Form for Coating Steel Sheet by the Hot-Dip Process