
【国外标准】 Standard Test Method for Wavelength of Peak Photoluminescence and the Corresponding Composition of Gallium Arsenide Phosphide Wafers (Withdrawn 2008)
本网站 发布时间:
2024-02-28
- ASTM F358-83(2002)
- Withdrawn, No replacement
- 定价: 0元 / 折扣价: 0 元
- 在线阅读
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
1.1 This test method covers the techniques used to determine the wavelength of the photoluminescence peak and the mole percent phosphorus content of gallium arsenide phosphide, GaAs(1 x)Px.1.2 Photoluminescence measurements indicate the composition only in the illuminated region and only within a very short distance from the surface, a distance limited by the penetration of the radiation and the diffusion length of the photo-generated carriers, as contrasted to X-ray measurements which sample a much deeper volume.1.3 This test method is limited by the surface preparation procedure to application to epitaxial layers of the semiconductor grown in a vapor-phase reactor on a flat substrate. It is directly applicable to n-type GaAs(1x)Px with the wavelength, PL, of the photoluminescence peak in the range from 640 to 670 nm, corresponding to mole percent phosphorus in the range from 36 to 42 % ( x = 0.36 to 0.42). The calibration data provided for the determination of x from P L is applicable to material doped with tellurium or selenium at concentrations in the range from 1016 to 1018 atoms/cm3.1.4 The principle of this test method is more broadly applicable. Other material preparation methods may require different surface treatments. Extension to other dopants, doping ranges or composition ranges requires further work to relate PL to the phosphorus content as determined by X-ray measurements of the precise dimensions of the unit cell upon which the calibration data are based. It is essential that calibration specimens have uniform composition in the volume sampled.1.5 This test method is essentially nondestructive. It requires a light etching of the sample to be measured. The removal of a layer of material approximately 0.5 to 1.0 m in thickness is required. This etching does not degrade the specimen in that devices can still be fabricated from it.1.6 This test method is applicable to process control in the preparation of materials and to materials acceptance.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7.
标准号:
ASTM F358-83(2002)
标准名称:
Standard Test Method for Wavelength of Peak Photoluminescence and the Corresponding Composition of Gallium Arsenide Phosphide Wafers (Withdrawn 2008)
英文名称:
Standard Test Method for Wavelength of Peak Photoluminescence and the Corresponding Composition of Gallium Arsenide Phosphide Wafers (Withdrawn 2008)标准状态:
Withdrawn, No replacement-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D4619-12(2018) Standard Practice for Inspection of Linings in Operating Flue Gas Desulfurization Systems
- ASTM D4623-16 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring Method—Three Component Borehole Deformation Gauge
- ASTM D4625-21 Standard Test Method for Middle Distillate Fuel Storage Stability at 43 °C (110 °F)
- ASTM D4626-23 Standard Practice for Calculation of Gas Chromatographic Response Factors
- ASTM D4630-19 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test
- ASTM D4631-18 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using Pressure Pulse Technique
- ASTM D4634-16(2022) Standard Classification System and Basis for Specification for Styrene-Maleic Anhydride Molding and Extrusion Materials (S/MA)
- ASTM D4636-17 Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils
- ASTM D4637/D4637M-15(2021)e1 Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane
- ASTM D4638-16(2023) Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis
- ASTM D464-15(2020) Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4647/D4647M-13(2020) Standard Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test
- ASTM D465-15(2020) Standard Test Methods for Acid Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4651-14(2020) Standard Specification for Isobutane Thermophysical Property Tables
- ASTM D4653-87(2020) Standard Test Method for Total Chlorides in Leather