
【国外标准】 Standard Test Method for Thermal Conductivity, Thermal Diffusivity, and Volumetric Heat Capacity of Engine Coolants and Related Fluids by Transient Hot Wire Liquid Thermal Conductivity Method
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method covers the measurement of thermal properties for engine coolants (aqueous or non-aqueous) and related fluids.5.2 With each single measurement, the thermal conductivity (λ) and thermal diffusivity (α) are measured directly, and volumetric heat capacity (VHC) is determined by the relationship:5.3 The test method is transient and requires only a small amount of specimen and a short duration of time (0.8 s) to run a measurement. These attributes minimize heat convection in the liquid.5.4 The brief application of current to the sensor wire adds very little heat to the test specimen and ten repetitive tests may be applied at 30 s intervals without causing any significant convection or temperature drift.1.1 This test method covers the use of a transient hot wire liquid thermal conductivity method and associated equipment (the System) for the determination of thermal conductivity, thermal diffusivity and volumetric heat capacity of aqueous engine coolants, non-aqueous engine coolants, and related fluids. The System is intended for use in a laboratory.1.2 The System directly measures thermal conductivity and thermal diffusivity without the requirement to input any additional properties. Volumetric heat capacity is calculated by dividing the thermal conductivity by the thermal diffusivity of the sample measured.1.3 This test method can be applied to any aqueous or non-aqueous engine coolants or related fluid with thermal conductivity in the range of 0.1 to 1.0 W/m∙K.1.4 This test method excludes fluids that react with platinum.1.5 The range of temperatures applicable to this test method is –20 to 100 °C.1.6 This test method requires a sample of approximately 40 mL.1.7 The System may be used without external pressurization for any fluid having a vapor pressure of 33.8 kPa (4.9 psia) or less at the test temperature.1.8 For a fluid having a vapor pressure greater than 33.8 kPa (4.9 psia) at the test temperature, external pressurization is required (see Annex A2).1.9 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7896-19
标准名称:
Standard Test Method for Thermal Conductivity, Thermal Diffusivity, and Volumetric Heat Capacity of Engine Coolants and Related Fluids by Transient Hot Wire Liquid Thermal Conductivity Method
英文名称:
Standard Test Method for Thermal Conductivity, Thermal Diffusivity, and Volumetric Heat Capacity of Engine Coolants and Related Fluids by Transient Hot Wire Liquid Thermal Conductivity Method标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D7895/D7895M-19 Standard Test Method for Thermal Endurance of Coating Powders Used for Powder Coating Insulation Systems
- 下一篇: ASTM D7897-18(2023) Standard Practice for Laboratory Soiling and Weathering of Roofing Materials to Simulate Effects of Natural Exposure on Solar Reflectance and Thermal Emittance
- 推荐标准
- AS 4276.19:2014 Water microbiology Examination for thermophilic Campylobacter spp. - Membrane filtration
- AS 5013.19.1-2012 Food microbiology Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of ß-glucuronidase-positive Escherichia coli-Colony-count technique at 44°C using membranes and 5-bromo-4-chloro-3-indolylß-D-glucuronide (ISO 16649-1:2001, MOD)
- AS/NZS 1462.19(Int):1999 Methods of test for plastics pipes and fittings C-Ring test for fracture toughness of PVC pipes
- AS/NZS 2111.19.2:1996 (R2016)/Amdt 1:1998 Textile floor coverings - Tests and measurements - Colourfastness tests - Shampoo solution
- AS/NZS 4456.19:2003/Amdt 1:2004 Masonry units, segmental pavers and flags - Methods of test Determining of bow
- AS/NZS 60745.2.19:2011 Hand-held motor-operated electric tools - Safety Particular requirements for jointers
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium