
【国外标准】 Standard Practice for Phased Array Ultrasonic Testing of Polyethylene Electrofusion Joints
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This practice is intended for the semi-automated or automated ultrasonic examination of electrofusion joints used in the construction and maintenance of polyethylene piping systems.5.2 Polyethylene piping has been used instead of steel alloys in the petrochemical, power, water, gas distribution, and mining industries due to its reliability and resistance to corrosion and erosion.5.3 The joining process can be subject to a variety of flaws including, but not limited to: lack of fusion, cold fusion, particulate contamination, inclusions, short stab depth, and voids.5.4 Polyethylene material can have a range of acoustic characteristics that make electrofusion joint examination difficult. Polyethylene materials are highly attenuative, which often limits the use of higher ultrasonic frequencies. It also exhibits a natural high frequency filtering effect. An example of the range of acoustic characteristics is provided in Table 1.6 The table notes the wide range of acoustic velocities reported in the literature. This makes it essential that the reference blocks are made from pipe grade polyethylene with the same density cell class as the electrofusion fitting examined.(A) A range of velocity and attenuation values have been noted in the literature (1-9).5.5 Polyethylene is reported to have a shear velocity of 987 m/s. However, due to extremely high attenuation in shear mode (on the order of 5 dB/mm (127 dB/in.) at 2 MHz) no practical examinations can be carried out using shear mode (6).5.6 Due to the wide range of applications, joint acceptance criteria for polyethylene pipe are usually project-specific.5.7 A cross-sectional view of a typical joint between polyethylene pipe and an electrofusion coupling is illustrated in Fig. 1.FIG. 1 Typical Cross-Sectional View of an Electrofusion Coupling Joint1.1 This practice covers procedures for phased array ultrasonic testing (PAUT) of electrofusion joints in polyethylene pipe systems. Although high density polyethylene (HDPE) and medium density polyethylene (MDPE) materials are most commonly used, the procedures described may apply to other types of polyethylene.NOTE 1: The notes in this practice are for information only and shall not be considered part of this practice.NOTE 2: This standard references HDPE and MDPE for pipe applications defined by Specification D3350.1.2 This practice does not address ultrasonic examination of butt fusions. Ultrasonic testing of polyethylene butt fusion joints is addressed in Practice E3044/E3044M.1.3 Phased array ultrasonic testing (PAUT) of polyethylene electrofusion joints uses longitudinal waves introduced by an array probe mounted on a zero degree wedge. This practice is intended to be used on polyethylene electrofusion couplings for use on polyethylene pipe ranging in diameters from nominal 4 in. to 28 in. (100 mm to 710 mm) and for coupling wall thicknesses from 0.3 in. to 2 in. (8 mm to 50 mm). Greater and lesser thicknesses and diameters may be tested using this standard practice if the technique can be demonstrated to provide adequate detection on mockups of the same geometry.1.4 This practice does not specify acceptance criteria.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E3170/E3170M-18(2023)
标准名称:
Standard Practice for Phased Array Ultrasonic Testing of Polyethylene Electrofusion Joints
英文名称:
Standard Practice for Phased Array Ultrasonic Testing of Polyethylene Electrofusion Joints标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM E317-21 Standard Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments
- 下一篇: ASTM E3171-21a Standard Test Method for Determination of Total Silver in Textiles by ICP-OES or ICP-MS Analysis
- 推荐标准
- ASTM D817-12(2019) Standard Test Methods of Testing Cellulose Acetate Propionate and Cellulose Acetate Butyrate
- ASTM D8170-20 Standard Guide for Using Disposable Handheld Soil Core Samplers for the Collection and Storage of Soil for Volatile Organic Analysis
- ASTM D8171-18 Standard Test Methods for Density Determination of Flax Fiber
- ASTM D8174-18 Standard Test Method for Finite Flash Point Determination of Liquid Wastes by Small-Scale Closed Cup Tester
- ASTM D8176-18(2023) Standard Test Method for Mechanically Tapped Density of Activated Carbon (Powdered and Fine Mesh)
- ASTM D8180-23 Standard Specification for Rerefined Mineral Insulating Liquid Used in Electrical Apparatus
- ASTM D8181-19 Standard Specification for Microemulsion Blendstock for Preparing Microemulsion Test Fuel Oils
- ASTM D8186-18 Standard Test Method for Measurement of Impurities in Graphite by Electrothermal Vaporization Inductively Coupled Plasma Optical Emission Spectrometry (ETV-ICP OES)
- ASTM D8188-23 Standard Test Method for Determination of Density and Relative Density of Asphalt, Semi-Solid Bituminous Materials, and Soft-Tar Pitch by Use of a Digital Density Meter (U-Tube)
- ASTM D8192-23 Standard Test Method for Hardness in Colored and Colorless Water
- ASTM D8195-18 Standard Classification System and Basis for Specification for Polyethylene Terephthalate Film and Sheeting
- ASTM D8198-18 Standard Specification for Hydraulically Applied 100 % Wood Fiber Mulches
- ASTM D8199-20 Standard Test Method for Determining the Specific Strength of Hydraulically Applied Fiber Matrix Products for Erosion Control
- ASTM D820-93(2023) Standard Test Methods for Chemical Analysis of Soaps Containing Synthetic Detergents
- ASTM D8200-22 Standard Practice for Creating a Correlation to Compare Particle Size Distribution Results of Proppants by Dynamic Imaging Analyzers and Sieves