
【国外标准】 Standard Test Methods for Microbiological Monitoring of Water Used for Processing Electron and Microelectronic Devices by Direct Pressure Tap Sampling Valve and by the Presterilized Plastic Bag Method (Withdrawn 2023)
本网站 发布时间:
2024-02-28
- ASTM F1094-87(2020)
- Withdrawn, No replacement
- 定价: 0元 / 折扣价: 0 元
- 在线阅读
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 These test methods provide a field technique for the bacteriological analysis of electronic process waters. The sampling of these waters and subsequent bacteriological analysis may be critical to electronic product yields. Bacteria can be the prime source of harmful contamination which can significantly reduce the yield of satisfactory microelectronic device production.5.2 The test methods described here may be used both to monitor the bacteriological quality of water used in microelectronic product processing, and to locate the source of bacterial contamination in a water purification system.5.3 These test methods are simple field methods, combining sampling and bacteriological analysis techniques that do not require bacteriological laboratory facilities.5.4 The test methods described employ culture techniques for bacteriological analysis. The user should be aware that such techniques cannot provide a complete count of the total viable bacteria present, since clumps and clusters of bacteria will appear as one single colony when cultured, and since some viable bacteria will not grow under the test conditions used. However, a meaningful comparative bacteria count will be achieved by this method if the culturing of the sample is always done at the same temperature, and for the same period of time. The temperature of incubation should always be at 28 ± 2°C, and the period of incubation should be 48 h (or 72 h if time permits). The period of incubation and temperature should be the same for all comparative studies.1.1 These test methods cover sampling and analysis of high purity water from water purification systems and water transmission systems by the direct sampling tap and filtration of the sample collected in the bag. These test methods cover both the sampling of water lines and the subsequent microbiological analysis of the sample by the culture technique. The microorganisms recovered from the water samples and counted on the filters include both aerobes and facultative anaerobes.1.2 Three methods are described as follows: SectionsTest Method A—Sample Tap—Direct Filtration 6 to 8Test Method B—Presterilized Plastic Bag Technique 9 to 12Test Method B2 —Dip Strip Technique2/Presterilized Plastic Bag 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F1094-87(2020)
标准名称:
Standard Test Methods for Microbiological Monitoring of Water Used for Processing Electron and Microelectronic Devices by Direct Pressure Tap Sampling Valve and by the Presterilized Plastic Bag Method (Withdrawn 2023)
英文名称:
Standard Test Methods for Microbiological Monitoring of Water Used for Processing Electron and Microelectronic Devices by Direct Pressure Tap Sampling Valve and by the Presterilized Plastic Bag Method (Withdrawn 2023)标准状态:
Withdrawn, No replacement-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3258-23 Standard Specification for Protectors for Rubber Insulating Gloves Meeting Specific Performance Requirements
- ASTM F3259-17 Standard Guide for Micro-computed Tomography of Tissue Engineered Scaffolds
- ASTM F3260-18 Standard Test Method for Determining the Flexural Stiffness of Medical Textiles
- ASTM F3262-17 Standard Classification System for Small Unmanned Aircraft Systems (sUASs) for Land Search and Rescue
- ASTM F3265-17(2023) Standard Test Method for Grid-Video Obstacle Measurement
- ASTM F3268-18a Standard Guide for in vitro Degradation Testing of Absorbable Metals
- ASTM F3270/F3270M-17 Standard Practice for Compression versus Load Properties of Gasket Materials
- ASTM F3273-17(2021)e1 Standard Specification for Wrought Molybdenum-47.5 Rhenium Alloy for Surgical Implants (UNS R03700)
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices