
【国外标准】 Standard Guide for Conducting Borehole Geophysical Logging: Mechanical Caliper
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 An appropriately developed, documented, and executed guide is essential for the proper collection and application of caliper logs. This guide is to be used in conjunction with Guide D5753.5.2 The benefits of its use include the following: improving selection of caliper logging methods and equipment, caliper log quality and reliability, and usefulness of the caliper log data for subsequent display and interpretation.5.3 This guide applies to commonly used caliper logging methods for geotechnical applications.5.4 It is essential that personnel (see the Personnel section of Guide D5753) consult up-to-date textbooks and reports on the caliper technique, application, and interpretation methods.1.1 This guide covers the general procedures necessary to conduct caliper logging of boreholes, wells, access tubes, caissons, or shafts (hereafter referred to as boreholes) as commonly applied to geologic, engineering, groundwater, and environmental (hereafter referred to as geotechnical) investigations. Caliper logging for mineral or petroleum exploration and development are excluded.1.1.1 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.2 This guide defines a caliper log as a record of borehole diameter with depth.1.2.1 Caliper logs are essential in the interpretation of geophysical logs since geophysical results can be significantly affected by borehole diameter.1.2.2 Caliper logs provide useful information for borehole completion and testing and are commonly used to assess borehole diameter, shape, roughness, and stability; calculate borehole volume; provide information on borehole construction; and delineate lithologic contacts, fractures, and solution cavities and other openings.1.2.2.1 Borehole-diameter information is essential for calculation of volumetric rate from flowmeter logs.1.2.2.2 Caliper logs are used to locate the optimum placement of inflatable packers for borehole testing. Inflatable packers can only form an effective seal within a specified range of borehole diameters, and can be damaged if they are set in rough or irregular parts of the borehole.1.2.2.3 Caliper logs are used to estimate the volume of borehole completion material (cement, gravel, etc.) needed to fill the annular space between borehole and casing(s) or well screen.1.2.2.4 Caliper logs may be applied to correlate lithology between boreholes based upon enlargements related to lithology. The measured borehole diameter may be significantly different than the drilled diameter because of plastic formations expanded into the borehole and friable formations enlarging the borehole. A series of caliper logs may also show increases or decreases in borehole diameter with time.1.3 This guide is restricted to mechanically based devices with spring-loaded arms, which are the most common calipers used in caliper logging with geotechnical applications.1.4 This guide provides an overview of caliper logging, including general procedures, specific documentation, calibration and standardization, and log quality and interpretation.1.5 This guide is to be used in conjunction with Guide D5753.1.6 This guide should not be used as a sole criterion for caliper logging and does not replace professional judgment. Caliper logging procedures should be adapted to meet the needs of a range of applications. Information in this guide is stated in general terms so that flexibility or innovation is not suppressed.1.7 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units, which are provided for information only and are not considered standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.8 This guide does not purport to address all of the safety and liability problems (for example, lost or lodged probes and equipment decontamination) associated with its use.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D6167-19
标准名称:
Standard Guide for Conducting Borehole Geophysical Logging: Mechanical Caliper
英文名称:
Standard Guide for Conducting Borehole Geophysical Logging: Mechanical Caliper标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D6166-12(2022) Standard Test Method for Color of Pine Chemicals and Related Products (Instrumental Determination of Gardner Color)
- 下一篇: ASTM D6168-97(2010) Standard Guide for Selection of Minimum Set of Data Elements Required to Identify Locations Chosen for Field Collection of Information to Describe Soil, Rock, and Their Contained Fluids (Withdrawn 2019)
- 推荐标准
- INCITS/ISO/IEC 14496-19:2004 (R2019) Information technology - Coding of audio-visual objects - Part 19: Synthesized texture stream
- INCITS/ISO/IEC 23000-19:2020 (2021) Information technology - Multimedia application format (MPEG-A) - Part 19: Common media application format (CMAF) for segmented media
- ASTM D8137-18(2023) Practice for Accelerated Aging of Leather
- ASTM D8138-23 Standard Specification for Preformed Silicone Joint Sealing System for Bridges
- ASTM D8139-23 Standard Specification for Semi-Rigid, Closed-Cell Polypropylene Foam, Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction
- ASTM D814-95(2020) Standard Test Method for Rubber Property—Vapor Transmission of Volatile Liquids
- ASTM D8140-18(2023) Standard Guide for the Use of Foundry Sand in Asphalt Mixtures
- ASTM D8141-22 Standard Guide for Selecting Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) Emission Testing Methods to Determine Emission Parameters for Modeling of Indoor Environments
- ASTM D8144-22 Standard Test Method for Separation and Determination of Aromatics, Nonaromatics, and FAME Fractions in Middle Distillates by Solid-Phase Extraction and Gas Chromatography
- ASTM D8148-22 Standard Test Method for Spectroscopic Determination of Haze in Fuels
- ASTM D8149-20 Standard Practice for Optimization, Calibration, and Validation of Ion Chromatographic Determination of Heteroatoms and Anions in Petroleum Products and Lubricants
- ASTM D8150-22 Standard Test Method for Determination of Organic Chloride Content in Crude Oil by Distillation Followed by Detection Using Combustion Ion Chromatography
- ASTM D8152-18 Standard Practice for Measuring Field Infiltration Rate and Calculating Field Hydraulic Conductivity Using the Modified Philip Dunne Infiltrometer Test
- ASTM D8154-24 Standard Test Methods for 1H-NMR Determination of Ketone-Ethylene-Ester and Polyvinyl Chloride Contents in KEE-PVC Roofing Fabrics
- ASTM D8155-17(2023) Standard Practice for Shake Extraction of Solid Mining and Metallurgical Processing Waste with Water